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Abstract—Recent theoretical advances have provided an an-
alytical expression for the Q of gravitationally-small sources of
gravitational radiation, along lines similar to the Wheeler-Chu
limit for electrically-small antennas. This paper presents the
first published results using this new theory to analyze the Q
of a black-hole inspiral, using observed transient gravitational
wave data from the GW170608 black-hole merger. Despite the
astronomical scale of a radiation source comprised of two black
holes having upwards of 7 solar masses each, the GW170608
binary black hole is shown to be a gravitationally-small high-Q
radiator at the very low frequencies of the gravitational waves.

I. INTRODUCTION

The first direct observation of gravitational waves was
made on September 14, 2015 by LIGO (Laser Interferome-
ter Gravitational-Wave Observatory) from a merging binary
system of black holes producing gravitational-wave event
GW150914 [1]. Early investigations in [2] suggested that
neutron-star gravitational-wave sources were gravitationally
small (size ≪ λ/π) and should exhibit a gravitational Q, simi-
lar to the electromagnetic Q of electrically-small antennas [3].
More recent theoretical results in [4] provided an analytic
expression for the Q of gravitational sources, and provided
the observed Q for a binary neutron-star gravitational-wave
source. In this paper, we show results for the observed Q of the
GW170608 binary black-hole gravitational-wave source [5].
Despite the considerably larger masses of the black holes, the
GW170608 binary black-hole source is shown below to be
gravitationally small and to have high Q.

The following results are the first published data that
presents a binary black-hole inspiral as a gravitationally-small
source for gravitational radiation. Earlier results were for a
binary neutron star, and given the significantly larger masses
of black holes, it was unclear whether binary black holes
would be gravitationally-small radiators. In the following, the
changing size of the radiation source during inspiral provides
the first observed Q for a binary black hole over a range of
gravitationally-small dimensions. Beyond these fundamental
results, the gravitationally-small high Q characteristics raise
the question of what antenna engineering techniques may be
applied to improve gravitational-wave receivers.

II. THEORY OF GRAVITATIONAL Q

Recently, in [4] we derived an analytic expression for the Q
of a gravitational-radiation source, along the lines of the Chu
limit of electromagnetic radiation sources [3]. In the case of

electromagnetic antennas, the Chu limit is Q ≈ 1/(ka)3 for
k a ≪ 1, where k = 2πf0/c = 2πf0/(3 × 108), and a is the
radius of the sphere enclosing the antenna [3]. In the case of
gravitational waves, we have shown the Q of a gravitational
source to be [4]
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where the gravitational constant G = 6.7× 10−11 N·(m/kg)2.
For the case of GW170608 [5], the masses are m1 = 2.4 ×
1031 kg and m2 = 1.4× 1031 kg, and amin is the final radius
of the orbit around the barycenter at coalescence. From prior
theoretical results in [4], amin at coalescence can be found
from the gravitational-wave frequency at coalescence using
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where as is radius of the orbit around the barycenter, ωorb =
2πforb = πfgw is the orbital frequency in rad/s, and fgw is
the gravitational-wave frequency in Hz. Then, for the 531.5 Hz
average peak GW strain frequency from [6] that occurs near
coalescence [7], the value of amin in (1) is calculated from
(2) to be amin ≈ 60 km.

From prior results in [4], the size parameter k as in (1) is
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Lastly, fgw is estimated from a curve-fit to the well-known
form of the frequency chirp of a binary inspiral [4]
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where t′ = −t is the time before coalescence. Taking the
natural logarithm,

ln(fgw) = 3.72− 3ln(t′)/8 , (5)

for the foregoing masses m1 and m2.
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Fig. 1. Observed gravitational wave frequency fgw in Hz for binary black-
hole inspiral GW170608 as a function of time before coalescence. Solid black
curve is observed gravitational wave frequency fgw estimated from the time-
frequency map in [5]. Coalescence is at t = 0.

III. OBSERVED GRAVITATIONAL Q FOR GW170608
The gravitational wave GW170608 observed by LIGO in

June 2017 was caused by the inspiral and merger of a binary
black hole [5]. Fig. 1 shows observed gravitational wave
frequency fgw in Hz, as estimated from the LIGO-Hanford
time-frequency map in [5]. The gravitational-wave frequency
of Fig. 1 was estimated with a log-log fit to (4) using the
time-frequency map published in [5], resulting in a curve-fit of
ln(fgw) = 3.655− 0.3725 ln(t′), for fgw from approximately
32 Hz to 259 Hz. This result is in good agreement with the
theoretical relation of (5), with 1.75% error for the constant
term, and 0.67% error for the slope term.

Fig. 2 shows the observed gravitational wave size parameter
k as in radians as determined by (3), using the gravitational-
wave frequency fgw shown in Fig. 1. Importantly, the black-
hole radiator remains gravitationally small during inspiral with
k as changing from k as ≈ 0.27 to k as ≈ 0.54. As the
frequency increases in Fig. 1, k as in Fig. 2 also increases, in
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Fig. 2. Observed k as in rad for binary black-hole inspiral GW170608 as
a function of time before coalescence. Solid black curve is observed gravi-
tational wave size parameter k as computed from the observed gravitational
wave frequency fgw in Fig. 1. Coalescence is at t = 0.
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Fig. 3. Observed Q for the binary black-hole inspiral GW170608 as a
function of time before coalescence. Solid black curve is the observed Q
computed from the value of k as in Fig. 2. Coalescence is at t = 0.

accordance with k as being proportional to ω1/3
orb = (πfgw)1/3

from (3). During inspiral, the increase in k as while orbital
radius as is decreasing seems counterintuitive, but this is
caused by the frequency fgw increasing faster than the orbital
radius decreases.

Fig. 3 shows the observed Q of GW170608 computed
from (1) using the observed value of k as from Fig. 2.
Here, Q decreases as both fgw and k as increase. The Q
of the gravitational-wave source varies from a maximum of
Q ≈ 4520 at t ≈ −1.7 s to Q ≈ 15 near coalescence. It is an
open question whether antenna engineering concepts such as
the Chu limit and electrically-small antennas can be applied
to improve the design of gravitational-wave detectors and to
increase understanding of gravitational waves. Nevertheless,
the observed Q in Fig. 3 would seem to suggest there may yet
be untapped opportunity in applying electrically-small antenna
engineering methods to gravitational-wave problems.
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