
Simulation and Measurement of an Internet of Things Implementation of
a Programmable Digital Inductor

Tyler C. Major, Kona Pranay Shekhar, James M. Conrad, and Thomas P. Weldon
Department of Electrical and Computer Engineering

University of North Carolina at Charlotte
Charlotte, NC, USA

tmajor1@uncc.edu, pkona@uncc.edu, jmconrad@uncc.edu

Abstract—The theory, design, and implementation of a pro-

grammable Internet of Things digital inductor circuit is pre-

sented. Since the inductor is implemented in digital signal

processing, the values for the inductance are easily modifiable

through an Internet of Things interface, enabling remote access

to the physical hardware. The system was implemented on a

commercially-available microntroller board using a client-server

scheme over ethernet connection. A control interface running

on a laptop was then used to change the inductance remotely.

Simulation and implementation of the design are presented and

are shown to match at a sample rate of 100 kilosamples per

second. Since the design method constitutes a digital approach,

performance is expected to scale with higher-speed hardware.

Index Terms—Digital Inductor, Embedded Systems, Internet

of Things.

I. INTRODUCTION

The ubiquitous presence of the internet combined with
the availability of small inexpensive microcontrollers is con-
tributing to the development of Internet of Things (IoT)
and associated applications [1]. Indeed, researchers are only
beginning to develop new systems that take advantage of
this emerging confluence of high connectivity and distributed
computing power. Considerable opportunity exists at both the
network level, in taking advantage of coordinated utilization
of many devices in the IoT, and at the device level, in creating
new ”Things.” The present investigation focuses on the device
level, in particular an IoT-controlled tunable digital inductor.

To demonstrate the proposed IoT-controlled digital inductor,
a client-server internet model was chosen. In this, a laptop
was used as a server and provided the user interface to
send commands to the remote microcontroller. Client soft-
ware runs on the microcontroller to communicate with the
laptop server, and update parameters such as the desired
inductance or resistance. In addition, the microcontroller ran
the signal processing necessary to implement inductance, and
included on-board analog-to-digital converter and digital-to-
analog converter. The resulting system provides a remotely-
tunable digital inductance that can be useful in a range of
applications such as impedance matching networks [2]. As
is well known, stability depends upon parasitic resistance in
addition to capacitance and inductance [3]. Due to this, the
paper adds in a resistance to the purely inductive system
to induce stability for the closed system for demonstration
purposes. This design is re-programmable through an Internet

of Things scheme to allow for on-the-fly reprogramming of
the system.

The following section first describes the overall IoT ap-
proach and system architecture. The subsequent section sum-
marizes theory of the digital inductor circuit and provides
simulation results. The final section describes measured results
for a prototype, in good agreement with simulation results.

II. IOT SYSTEM ARCHITECTURE AND DESIGN

The system in Fig. 1 was implemented as an Internet of
Things interface concept. The micro controller board was an
NXP FRDM-K64F microcontroller board. The FRDM-K64F
board houses a 120Mhz ARM Cortex-M4 Core with Floating
point unit and DSP, along with a 16-bit ADC, 12-bit DAC,
and Ethernet interface. The Ethernet socket interface uses TCP
protocol for communication, so the client can be accessed from
anywhere as long as the client and server are on the same
network, while using a gateway could provide accessibility
across the Internet, i.e resolve the hostname. For purposes of
demonstration, it is not necessary to hard-code an IP address,
since both the server-client are on the same network connected
point-to-point via an Ethernet cable.

In order to implement the digital inductor on the FRDM-
K64F board, the on-board ADC and DAC are used. The
voltage input to the ADC in Fig. 1 digitizes the analog input
voltage vin(t) to form the discrete time output vin[n]. The
DAC output vdac[n] is given through Vdac(z) = Vin(z)H(z),

Fig. 1. Proposed IoT-controlled tunable digital inductor. A laptop server
interfaces with a client running on the microcontroller, and passes design
parameters to the digital signal processing software on the microcontroller.
The on-board ADC and DAC on the microcontroller are connected to resistor
Rdac, and connect to the analog port with voltage vin(t) and current iin(t).
Signal processing is used to establish an inductive impedance at the port
vin(t).

Copyright 2016 IEEE. Published in 2016 IEEE SoutheastCon, Norfolk, VA, 30 Mar - 3 Apr, 2016. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE, 445 Hoes Lane, Piscataway, NJ 08855, USA. Tel.: 908-562-3966. See http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Simulation%20and%20Measurement%20of%20an%20Internet%20of%20Things%20Implementation%20of%20a%20Programmable%20Digital%20Inductor .

Fig. 2. Code snippet of the client - side which shows the IP address and Port
number of the server.

where H(z) is the z-transform of the impulse response h[n]
characterizing the digital signal processing.

The voltage output DAC creates continuous time output
voltage vdac(t). Finally the continuous time input current
iin(t) is then (vin(t)� vdac(t))/Rdac. The z-transform H(z)
determines the behavior of the overall circuit. The architecture
of the signal processing follows along lines similar to [4], ex-
cept that a series resistance component is added to help prevent
instability and a voltage-output DAC is used in conjunction
with Rdac, as shown in Fig. 1.

Using Python socket interfaces [5], basic socket calls are
implemented to connect and establish socket connection on
the server side. The FRDM-K64F supports the MBED library,
which provides the Ethernet Interface library support, although
discontinued now, the routines and the library is still compiled
by the MBED online IDE. Hence, the client-side socket calls
are C++ code. Use of DHCP protocol enables the use of
dynamic IPs, rather than defining static IP for either the Master
or Slave. One care to be taken, is that the client code has the
correct IP address and port number of the server, and this is
defined in the client by the code snippet shown in Fig. 2.

The server-side script has to be executed on the com-
puter/laptop system before the client program runs, because
the server-side program waits for the client to connect and
only after a successful connection displays the interface for
the user to enter data. As shown in the blue box of Fig 3,
the server waits for the client to be connected after the script
starts. Once a client is successfully connected, the client’s IP
address is displayed.

A computer system or laptop with RJ-45 port, Ethernet
support, and Python support (v 2.7.10) is required to interface
with the Ethernet port of FRDM-K64F. A server-client archi-
tecture is implemented, where the computer system executing
a python based script is the server and the FRDM-K64F is the
client which receives the design parameters from the server.
The python script provides an interface for the user to input
the values of series resistance Rser and inductance L. The

Fig. 3. Execution of the server-side script. The blue box indicates the socket
call on the server side that waits for the client to connect and displays the
client’s IP address on successful communication. The blue box displays the
FC based options for the user to enter the data.

Fig. 4. Execution example of the system. The example shows how to change
the values and send the data to the client.

system also makes use of Function Code (FC) based system
for updating values of Rser and L. The FCs for the system
are given in Table I. FC 01 is used for modifying value of
Resistance, FC 02 for inductance, and FC 03 to send design
parameters to the client (FRDM-K64F).

TABLE I
FUNCTION CODES

Function Code Usage Example Description
01 01 100 Modify the resistance value to 100 ⌦

02 02 40 Modify the Inductance value to 0.04 H
03 03 Send data to the FRDM-K64F

Once the connection is established between the server and
client, the Function Code list is displayed to the user along
with the usage example as shown by the yellow box of Fig 3.

The current values of Rser and L are displayed to the user as
part of the user prompt, so that the user can know the current
value of both the parameters on the server. These values might
not be the same values as in the client. As a security measure
the values sent by the server are not directly implemented by
the client, FRDM-K64F. FRDM-K64F has a programmable
Switch interrupt, which is used to accept the new values from
the server. Once the values are sent from the server, the values
will be stored in a buffer on the FRDM-K64F. For the purpose
of demonstration, the difference equation in the system will
be updated only when switch 2 is pressed and the new values
accepted.

The server side calculates the stability as discussed in [3],
and displays this before sending the data. There is no restric-
tion on transmitting unstable values, as the stability analysis
is only with respect to a 50⌦ system, and hence the overall
circuit can be stable for other source impedance values. Fig. 4
shows the execution of different sets of values and transmitting
them to the board.

III. DIGITAL INDUCTOR DESIGN

The design of the digital inductor follows along lines similar
to [4], except that a series resistance component is added to
help prevent instability and a voltage-output DAC is used
in conjunction with Rdac, effectively a Thèvenin equivalent

Fig. 5. ADS time-domain simulation using a 50⌦ 4 KHz square wave input
signal at T = 10µs, for L = 0.02H, Rser = 100⌦, and Rdac = 1000⌦.
The red dashed line indicates the input voltage to the ADC vin(t). Thin green
dot-dashed trace is the output on the DAC, vdac. Blue trace is the current
iin(t) in mA.

of [4]. In this approach, the z-transform H(z) and associated
difference equation determines the behavior of the overall
circuit. The following paragraphs develop the particular case
where a digital inductor is considered.

To begin the development of the inductor design, first
consider a voltage across an inductor v(t) = Ldi(t)/dt, which
has a simple discrete-time approximation of the derivative
being v(t) ⇡ L(i[n]� i[n� 1])/T , where T is the sampling
period. Approximating the input current as iin(t) ⇡ [vin(t)�
vdac(t)]/Rdac and substituting into the equations yields the
difference equation

vin(t) ⇡
L

Rdac

(vin[n]� vin[n� 1])� (vdac[n]� vdac[n� 1])

T
.

(1)
Solving for vdac[n] gives

vdac[n]� vdac[n� 1] = vin[n](1�
RdacT

L
)� vin[n� 1]. (2)

To help improve control of the stability of the digital inductor,
a series resistance Rser is also added to the signal processing.
Adding this series resistor gives v(t) = Ldi(t)/dt+ i(t)Rser .
Solving, as before, for vdac[n] then yields

vdac[n] =
vin[n](1 +

RserT�RdacT
L)� vin[n� 1] + vdac[n� 1]

(1 + RserT
L)

.

(3)

IV. SIMULATION

The signal processing of Fig. 1 with the laptop server
portion being the implementation from Fig. 3 was simulated
in ADS for 2 sets of values, an inductance of 0.02H and a

Fig. 6. ADS time-domain simulation using a 50⌦ 4 KHz square wave input
signal at T = 10µs, for L = 0.04H, Rser = 100⌦, and Rdac = 1000⌦.
The red dashed line indicates the input voltage to the ADC vin(t). Thin green
dot-dashed trace is the output on the DAC, vdac. Blue trace is the current
iin(t) in mA.

series resistance of 100⌦, and an inductance of 0.04H and
a series resistance of 100⌦. A clock frequency of 100 KHz
was used, corresponding to T = 10µs, and driven by an input
source of impedance 50⌦. The simulation was done using
ideal switches and ideal amplifiers as in [4], where the gains
of the amplifiers establish the difference equation coefficients
in (3). In addition, a latency of 0.9 µs was added to account for
ADC conversion time and computational latency. The results
of the simulations are shown in Fig. 5 and Fig. 6, with the blue
trace representing the current iin(t).The dashed red line is the
input voltage to the ADC vin(t), the thin dot-dashed line is
the voltage output of the DAC vdac(t). Note that, the voltage
vin(t) corresponds to the slope of the current diin(t)/dt, as
expected for an inductor, where v = Ldi/dt.

V. EXPERIMENT AND MEASUREMENTS

The IoT digital inductor of Fig. 1, with Fig. 3 acting as
the laptop server, was implemented using the NXP FRDM-
K64F microcontroller board. It was measured using a 4 KHz
square wave input signal, with an amplitude of 0.2 V and
an offset of 0.750 V at 50% duty cycle. The oscilloscope is
configured to display the waveform of the ADC input vin(t),
the DAC output vdac(t), and the input current iin(t) in mA
(current in mA computed by subtracting the voltages across
Rdac = 1000).

Fig. 7 shows measured results for the prototype with a
digital inductor having parameter values of L = 0.02 H,
Rser = 100⌦, T = 10µs, Rdac = 1000⌦, and with a 50⌦
source driving the circuit. The red trace is the voltage input

to the ADC, vin(t). The green trace is the voltage output of
the DAC vdac(t). The blue trace is the input current iin(t)
in mA. When the slope of the current iin(t) is positive, the
input voltage vin(t) is positive, and when the slope of the
current iin(t) is negative, the input voltage vin(t) is negative,
as expected for a positive inductor. For the observed peak
input voltage of ⇡ 25 mV, the observed slope of current is
110µA/100µs = 1.1 A/V, so with v = Ldi/dt, L = 0.023 H.

Fig. 7. Measured data at T = 10µs, for L = 0.02 H, Rser = 100⌦,
Rdac = 1000⌦, with 4 KHz square wave input vin(t), plotted at 100 µs
and 50 mV per division, and a 50⌦ source driving the circuit. Red trace
indicates the input to the ADC vin(t) from the function generator . Green
trace is the output voltage of the DAC, vdac(t). Blue trace is the current
iin(t). For the observed peak input voltage of ⇡ 25 mV, the observed slope
of current is 110µA/100µs = 1.1 A/V, so with v = Ldi/dt, L = 0.023 H.

Fig. 8 shows measured results for the prototype with a
digital inductor having parameter values of L = 0.04 H,
Rser = 100⌦, T = 10µs, Rdac = 1000⌦, and with a 50⌦
source driving the circuit. The red trace is the voltage input
to the ADC, vin(t). The green trace is the voltage output of
the DAC vdac(t). The blue trace is the input current iin(t) in
mA. For the observed peak input voltage of ⇡ 25 mV, the
observed slope of current is 50µA/100µs = 0.5 A/V, so with
v = Ldi/dt, L = 0.05 H.

The complete experimental setup is shown in Fig. 9. The
setup consists of a laptop with an RJ-45 LAN port and Ethernet
interface for communication with FRDM-K64F. The FRDM-
K64F is powered up via the on-board mini usb connected
to the laptop. On power-up, the socket interface is estab-
lished, using the Ethernet interface. The interface provides
easy access to change the values of Rser and L, without
having to modify the program. Once the values are received
by the micrcontroller, they are executed accordingly and the
waveforms can be seen on the oscilloscope. There is no
limitation or restriction on modifying the values on a single
program execution. The waveforms displayed in Fig 7 and
Fig 8 were executed in a single program execution, using the
interface to modify the values of L. Hence by comparing the
simulation waveforms in Fig 5 and Fig 6 with measured data
from Fig 7 and Fig 8, we can infer that the system provides
a programmable inductance.

Fig. 8. Measured data at T = 10µs, for L = 0.04 H, Rser = 100⌦,
Rdac = 1000⌦, with 4 KHz square wave input vin(t), plotted at 100 µs
and 50 mV per division, and a 50⌦ source driving the circuit. Red trace
indicates the input to the ADC vin(t) from the function generator . Green
trace is the output voltage of the DAC, vdac(t). Blue trace is the current
iin(t). For the observed peak input voltage of ⇡ 25 mV, the observed slope
of current is 50µA/100µs = 0.5 A/V, so with v = Ldi/dt, L = 0.05 H.

Fig. 9. Implementation setup displaying the FRDM-K64F microcontroller
connected via ethernet to a laptop running the python based socket script.

VI. CONCLUSION

An IoT-controlled adjustable digital discrete-time inductor
was presented, including design theory, simulated and mea-
sured results, and a programmable Internet of Things interface.
The measured results agree with the simulated results, and
the IoT interface allows remote adjustment and tuning of
inductance.

REFERENCES

[1] J. A. Stankovic, “Research directions for the internet of things,” Internet
of Things Journal, IEEE, vol. 1, no. 1, pp. 3–9, Feb. 2014.

[2] S. E. Sussman-Fort, “Matching network design using non-Foster
impedances,” Int. J. of RF and Micro. Comp.-Aided Eng., vol. 16, no. 2,
pp. 135–142, 2006.

[3] T. P. Weldon, J. M. C. Covington, K. Smith, and R. S. Adams, “Stability
conditions for a digital discrete-time non-Foster circuit element,” in
2015 IEEE Antennas and Propagation Society International Symposium
(APSURSI), Jul. 2015.

[4] T. P. Weldon, J. M. C. Covington, K. Smith, and R. S. Adams, “Per-
formance of digital discrete-time implementations of non-Foster circuit
elements,” in 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), May 2015, pp. 2169–2172.

[5] M. Gordon, “An introduction to network programming the python way
[book review],” Distributed Systems Online, IEEE, vol. 6, no. 10, 2005.

