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Abstract—Delta-sigma modulators offer the potential for high 
linearity in a wide variety of radio frequency applications.  In 
addition, the binary pulse output of the modulator motivates 
application as a driver for class C and class D amplifiers.  
Although class D amplifiers offer potential for higher power 
efficiency, class C amplifiers offer nearly the same performance 
with potential for less complexity.  In addition, most radio 
signals of interest in these amplifier applications are bandpass.  
Therefore, the design and simulation of bandpass delta-sigma 
modulators are considered for application in driving class C 
amplifiers.  

I. INTRODUCTION  
Delta-sigma modulators (DSM) have been well known for 

several decades, and have been applied to an increasingly 
wide range of applications.  With high order loop filters and 
high over-sampling ratios, delta-sigma modulators have been 
used to create analog to digital converters (ADC) with more 
than 16 bits of resolution [1][2].  Because of the linearity and 
precision of single-bit feedback DSM architectures, the DSM 
has become a prime candidate for applications such as pulse 
width modulators and amplifier drivers [3][4].   Therefore, the 
present paper considers design characteristics of bandpass 
DSM systems for application in driving class C amplifiers. 

Previous investigators have considered using DSM to 
drive class D RF amplifiers [4].  Such class D applications 
naturally lend themselves to a DSM architecture where the 
typical push-pull on/off type of class D amplifier output is 
well matched to a binary DSM output.  In addition, 
researchers have considered DSM approaches to drive class C 
amplifiers, showing some promise for generating highly linear 
CDMA signals [3].   Although class D amplifier theoretical 
efficiency is 100%, class C amplifiers can theoretically reach 
90% efficiency.  Class C amplifiers are also typically simple 
single-supply single-transistor designs.  Therefore, the present 
paper considers the design of DSM for radio frequency (RF) 
class C amplifiers, because of their competitive efficiency and 
low complexity. 

A bandpass DSM is best suited as a driver for RF class C 
amplifiers, since the RF signals in transmitters are commonly 
bandpass in nature. In contrast to lowpass delta-sigma 
modulators that shape noise away from dc, a bandpass delta 
sigma modulators shape noise away from the band of interest 
[5].   This also allows the DSM to be designed to effectively 
shape and reduce noise near the frequency of operation.    

In the next section, the design of lowpass first order DSM 
systems is first reviewed.  Noise shaping characteristics of the 
DSM are also discussed.  In the subsequent section, the 
lowpass first order DSM is modified to illustrate the design 
and performance of a simple bandpass DSM for use in driving 
RF amplifiers. 

II. LOWPASS FIRST ORDER DELTA-SIGMA MODULATOR  
The block diagram of a simple delta-sigma modulator is 

shown in Fig. 1.  An input signal x[n] is subtracted from the 
feedback digital-to-analog converter (DAC) output, forming 
the  input to the filter H(z).   The output of filter H(z) is 
quantized to form output y[n].  Not shown in the figure are 
the additive quantization noise e[n] due to the quantizer, and 
any final decimation filter following y[n]. 

 
The delta-sigma modulator output Y(z) can be described 

by computing the closed-loop signal transfer function STF(z) 
of Fig. 1 and adding  quantization noise shaped through a 
noise transfer function NTF(z).  Taking the z-transform, X(z) 
is the input signal, E(z) is the quantization error, Y(z) is the 
output, and the system output can be shown to be: 
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Y (z) = STF (z)X (z) + NTF (z)E(z) .  (2) 
 
 
 



 

 

       

 
For a simple lowpass sigma-delta modulator example, 

H(z) can be a delayed integrator described as 

      

! 

H (z) =
z"1

1" z"1
 .     (3) 

 

The modulator output now can be reduced to [6]: 

 

               

! 

Y (z) = z"1X (z) + 1" z"1( )E(z) ,   (4) 

where E(z) is the error generated by the quantization process.  
Equation (4) shows that the output of the DSM equals a 
delayed version of the input, plus quantization error shaped by 
the effective highpass filtering of the frequency response of 
the term (1-z-1). 

Another approach to implement the first order delta-sigma 
modulator incorporates delay in the DAC feedback.  In this 
case, the output Y(z) becomes:  
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Y (z) =
H (z)

1+ z"1H (z)
X (z) +
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1+ z"1H (z)
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In addition, a non-delayed integrator H(z) can be employed 

with: 
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H (z) =
1

1" z"1
 .          (6) 

 

Incorporating the delayed DAC from (5) and the non-
delayed integrator from (6), the output Y(z) in (4) now 
becomes:  

 

              

! 

Y (z) = X (z) + 1" z"1( )E(z)  .         (7) 

 

The main difference between the two approaches in (7) 
and (4) is that the signal component of the output of the 
modulator is delayed in (4).  However, from (4) and (7), it can 

be seen that noise transfer function NTF(z) is the same in both 
approaches.  

The complete block diagram of the lowpass first order 
delta sigma modulator for (7) is shown in Fig. 2.  The loop 
inside the dashed box is the non-delayed integrator in (6) with 
z-transform H(z)=1/(1-z-1).  In the figure, x[n] and y[n] are 
again the input and output signals, and the quantization error 
e[n] is now explicitly shown.  Thus, the theoretical output 
Y(z) for Fig. 2 is given by (7). 

To illustrate operation of the DSM, the system of Fig. 2 
was simulated for an input consisting of two sinusoids.   Fig. 3 
demonstrates that the reconstructed output signal tracks the 
input signal (after the output signal y[n] is post-processed in a 
decimator not shown in Fig. 2).   The binary output y[n] is 
presented in Fig. 4, and shows a string of low outputs when 
the reconstructed output is low, and a string of high outputs 
when the reconstructed output signal is high. 

Figure 1.  Simple delta-sigma modulator block diagram 
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Figure 4.  Reconstructed signal (dash blue) and corresponding 
binary DAC output.  

Figure 3.  Reconstructed two-tone output signal (dash blue) in 
comparison  to two-tone input (solid  red) 

 

Figure 2.  Simple delta-sigma modulator block diagram.  H[z] 
is non delay integrator [7] 
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III. BANDPASS DELTA SIGMA MODULATION 
A simple method for creating a bandpass DSM transfer 

function is by replacing z by –z2 in the lowpass DSM.  This 
converts the low pass STF(z) into a bandpass signal transfer 
function, and converts the highpass NTF(z) into a bandstop 
noise transfer function.  The transformation can be viewed as 
moving the single lowpass pole at z=1 to a pair of bandpass 
poles on the unit circle at z=±j.  Thus, the transformed H(z) 
behaves as a resonator with poles at z=±j.  By using the 
resonator for H(z), the modulator effectively shapes noise 
away from the signal passband of interest, pushing the noise 
toward dc and ω=π rad/sample. 

The transfer function of a second order band pass 
resonator H(z) shown in Fig. 7 can be described as: 

 

    

! 

H (z) =
1

1+ z"2
              (8) 

Following the same lines as for the lowpass DSM, the 
closed loop transfer function of Fig. 7 can be described as: 

 

  

! 

Y (z) = X (z) + 1+ z"2( )E(z)               (9) 

As can be seen from (9), the signal transfer function 
STF(z) is not changed, while the noise transfer function 

NTF(z) has a second order zero at ω=π/2 rad/sample.  This 
second order zero suppresses the noise at the passband.  As 
before, Fig. 8 shows the input signal compared to the 
reconstructed signal.  Fig. 9 shows the binary output y[n] 
along with the reconstructed signal.   

For the bandpass DSM, Fig. 10 shows the first N/2 points 
of a discrete Fourier transform of y[n].  The sinusoid 
comprising the input signal is visible as a sharp peak near 
ω=π/2 rad/sample.   The characteristic bandstop  behavior of 
the noise transfer function NTF(z) is also seen in the noise 
floor of Fig. 10. Figure 11 shows the Fourier transform of the 
reconstructed signal after decimation.  The frequency axis in 
Fig. 11 is discrete frequency ω from 0 to π rad/s. 

The simple bandpass example in (9) illustrates the 
capability of a DSM in driving a class C or class D amplifier.  
From Fig. 10, the binary modulator output y[n] is seen to pass 

Figure 5.  Output spectrum obtained directly from the y[n] 
output without filtering or decimation.  Frequency axis 
corresponds to ω from 0 to π rad/sample. 
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Figure 7.  Simple band pass delta-sigma 
modulator block diagram[7] 

Figure 6.   Decimator output spectrum   

 ω 

Figure 8.  Reconstruct output of band pass delta sigma 
modulator.  There are delays between input and output, 
however, the shape of the output signals still replica that of 
the input. 

Figure 9.  Reconstruct DAC output signal 
correspond to the DAC output.  

 



 

 

the desired bandpass RF signal, as required.  In addition, the 
quantization noise in Fig. 10 is seen to be suppressed near the 
RF frequency by the noise transfer function NTF(z).  In 
addition, the binary output streams shown in Figs. 4 and 9 are 
well suited to driving on/off amplifier stages, such as class D 
and class C amplifiers [3],[4].   

For a band pass DSM, the out of band quantization noise 
will affect nearby channels, especially in wide band 
application.    Improvement may be obtained by adding 
pseudo white noise to the modulator[8].  Reducing noise 
correlation can improve further SNR [9].   

 

IV.  FUTURE WORK 
The foregoing examples illustrate the main features of 

DSM.  In particular, the bandpass DSM has the desired signal 
transfer function and noise transfer function for bandpass RF 
signals.  In addition, the binary output is well-suited to driving 
RF amplifier stages where the transistors operate as on/off 
switches.  Because of the simplicity of class C stages, future 
plans are focusing on using the binary output of the bandpass 
DSM to drive class C RF amplifiers.  Current efforts are 
focusing on duty cycle issues to maintain class C operation.   
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Figure 10.  Spectrum of the bandpass DSM outut y[n]. Frequency 
axis corresponds to ω from 0 to π rad/sample.  

ω 
Figure 11.  Spectrum of the  reconstructed band pass modulator 
after decimation filtering.   


