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Abstract—Astronomical observations of gamma-ray bursts can

exhibit dispersive behavior where high-energy gamma rays arrive

significantly later than low-energy photons. Although the under-

lying mechanisms for the dispersion are not fully understood, a

polynomial model has been proposed for modeling the apparent

frequency-dependent photon velocity. The present work considers

the impact of this dispersion model on the Helmholtz equation.

The result is an extended form of the Helmholtz equation, where

additional terms are used to model observed dispersion. The pro-

posed set of equations closely resembles one type of metamaterial

model, and therefore exhibits similar behavior. Comparisons are

drawn between the gamma-ray models and similar metamaterial

models that exhibit right-handed behavior at low frequencies

and left-handed behavior at high frequencies. Finally, the overall

approach provides a flexible modeling framework that can be

adapted as new gamma-ray data become available.

I. INTRODUCTION

The Fermi Gamma-ray Space Telescope has enhanced the
ability of scientists to measure dispersion of high-energy
gamma rays [1]. While the underlying mechanism of the
dispersion remains uncertain, a number of investigators have
suggested a quadratic polynomial model for the frequency-
dependent velocity of high-energy photons [2]–[5]. Although
a linear dispersion model appears unlikely based on data from
gamma-ray burst GRB 090510 in May of 2009, quadratic
dispersion models have not yet been disproven [6]. In this
gamma-ray burst, photons at 31 GeV arrived perhaps as much
as 859 ms later than low energy photons.

Since linear dispersion models appear unlikely for gamma-
ray bursts, the remainder of the paper focuses on developing
dispersive equations from quadratic dispersion models and the
Helmholtz equation. The following development addresses the
formulation of dispersive propagation models based directly
on the measured dispersion data of gamma-ray bursts. This
empirical approach avoids the need for theoretical details of
the physical mechanisms of the dispersion and avoids reliance
on controversial theories.

In addition, the proposed dispersion models are observed
to have the same form as certain types of metamaterial
models [7]. Having the same form of equations as these meta-
materials, the proposed gamma-ray dispersion models then
exhibit right-handed behavior at low frequency, left-handed
behavior at high frequency, and a forbidden frequency band,

or stop band. Therefore, these corresponding metamaterial
models offer additional insight to the behavior of the proposed
gamma-ray models.

In the next section, the proposed gamma-ray propagation
models are first developed, based on empirical data from recent
gamma-ray burst data. Then, a similar metamaterial model
is presented in the subsequent section. Further insight to the
behavior of the proposed gamma-ray models is drawn from
these metamaterial models.

II. PROPOSED GAMMA-RAY PROPAGATION MODELS

In previous investigations of dispersion in gamma-ray
bursts, the velocity of light has been modeled as a power series
expansion for high photon energies [2]–[5]. In these models,
the photon velocity u is typically expressed as a function of
photon energy E , or of angular frequency ω, up to second
order [2]:

u = c
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where E = hω/(2π) is photon energy in eV, ω is photon
frequency in rad/s, Planck’s constant is h = 4.14×10−15 eV·s,
Ep = 1.22× 1028 eV is the Planck energy, c = 3.0× 108 m/s,
and ξ, ζ, a1 = ξh/(2πEp), and a2 = ζh2/(2πEp)2 are free
parameters [2].

However, recent measured data from gamma-ray burst GRB
090510 suggest that the linear term a1 may be zero [6],
resulting in:

u = c
�
1− a2ω

2
�
. (2)

Next, the foregoing dispersion relation can be substituted
into the Helmholtz equation. Because u approaches c at low
frequency in (2), the resulting Helmholtz equation will remain
consistent with the classical free-space Helmholtz equation at
low frequency. To begin, consider the Helmholtz equation in
a vacuum for low energy photons [8]:
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∇2
E =

−ω2

c2
E = −ω2µ◦�◦E, (3)

and the corresponding free-space form of Maxwell’s equa-
tions:

∇×E = −jωµ◦H

(4)
∇×H = jω�◦E,

where the vacuum permittivity is �◦ = 8.85× 10−12 F/m and
the vacuum permeability is µ◦ = 1.26×10−6 H/m. When the
dispersive velocity u from (2) is substituted for the constant
velocity c in (3), the dispersive form of the Helmholtz equation
becomes:

∇2
E = − µ◦

(1− a2ω2)

�◦
(1− a2ω2)

ω2
E, (5)

where the denominator terms below �0 and µ0 were equally
distributed on the right side of (5). The plane-wave solution of
(5) is E = E◦e−jkzejωt = E◦e−jωz/uejωt, where the phase
velocity is u = c(1−a2ω2), and the wavenumber is k = ω/u.
Comparison of (5) with (3) further suggests that (4) should
then become:

∇×E = − jωµ◦
(1− a2ω2)

H

(6)

∇×H =
jω�◦

(1− a2ω2)
E,

or

∇×E− a2ω
2 (∇×E) = −jωµ◦H

(7)
∇×H− a2ω

2 (∇×H) = jω�◦E,

The result in (7) is the proposed form of dispersive
Helmholtz equations. This result follows from the quadratic
dispersive velocity model in (2) being substituted into the
Helmholtz equation in (3). The dispersion parameter a2 in
(7) can be computed from gamma-ray measurements where
Ep/(ζ1/2) ≈ 5 × 1018 eV [2]. Solving for a2 then gives
a2 = ζh2/(2πEp)2 ≈ 1.74× 10−68 s2 in (7).

Recall that the denominator terms beneath �◦ and µ◦ were
somewhat arbitrarily allocated equally in the two denomitors
on the right side of (5). Other arrangements are possible, but
the result in (7) seems preferable because of its symmetric
form. In addition, it is straightforward to modify the foregoing
development to include the linear term a1ω that was omitted
from (1), in the event that future empirical data supports a
non-zero linear term. In this case, (5) would become:
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c2 (1− a1ω − a2ω2)2
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with corresponding dispersive equations, along the lines of
the previous development. However, recent gamma-ray results
in [6] seem to favor the form in (5) rather than (8).

III. COMPARISON TO METAMATERIAL MODELS

The dispersive gamma-ray model in (7) can be shown to
be similar to certain metamaterial models. Because of this
similarity, prior results for the metamaterial models offer
insight to the behavior of the proposed gamma-ray dispersion.
Thus, the gamma-ray model is expected to exhibit properties
such as left-handed frequency bands, right-handed frequency
bands, and forbidden stop-bands. In the following, prior results
are first summarized, and then the the behavior of the gamma-
ray model is discussed in light of the earlier metamaterial
results.

Metamaterials are often modeled as composite right/left-
handed (CRLH) transmission-line structures, which exhibit
right-handed and left-handed behavior in frequency bands
commonly separated by a forbidden frequency band, or stop
band [9]. These structures are not unique, and a variety of
metamaterial transmission line models can be obtained with
different arrangements of series reactance and shunt reactance
for the distributed transmission-line parameters.

Among such transmission line models of metamaterials,
the gamma-ray model in (7) closely resembles the following
CRLH model having right-handed behavior at low frequency,
left-handed behavior at high frequency, and a forbidden fre-
quency band, or stop band [7]:

∇×E+ µ�L
∂2
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(∇×E) = −µ
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(9)
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,

where µ is permeability in H/m, � is permittivity in F/m, �L is
defined as left-permittivity in F·m, and µL is defined as left-
permeability in H·m. For a frequency ω, equation (9) results
in:

∇×E− µ�L ω2 (∇×E) = −jωµ H

(10)
∇×H− µL� ω

2 (∇×H) = jω� E.

By comparison, note that the metamaterial model in (10)
is identical to the gamma-ray dispersion result in (7) when
µ = µ◦, � = �◦, and a2 = µL�◦ = µ◦�L. Thus, the behavior



of the metamaterial result offers insight into the behavior of
the gamma-ray dispersion result.

In addition, observe that the proposed dispersive equations
in (7) and (10) revert to the normal form of Maxwell’s
equations in (4) at low frequencies, with a right-handed
electromagnetic wave solution. In essence, the additional terms
in equations (7) and (10) behave as dispersive extensions
of Maxwell’s equations. At extremely high frequencies, the
second term on the left side of (7) dominates, and the solution
becomes a dispersive left-handed electromagnetic wave [7],
similar to other dispersive relationships found in metamateri-
als, optics, and left-handed microwave structures [9]–[11].

As noted above, the metamaterial model in (10) is right-
handed at low frequency and left-handed at high frequency,
with a forbidden frequency band, or stop band, between. To
see this, first find the wave equation by taking the curl of both
sides of line 1 of (10) (with ∇ ·E = 0):
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or
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Then, take ∂/∂t on both sides of line 2 of (10) and multiplying
both sides by µ

µ ∂
∂t∇×H+ µL�µ

∂3
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∂t2E . (12)

Next, substitute the right side of (11) for the two corre-
sponding left-hand terms of (12) to obtain the wave equation
corresponding to (10) :
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or

∇2
E+ (µ�L + µL�)

∂2

∂t2

�
∇2

E
�
+ µ�µL�L

∂4

∂t4

�
∇2

E
�

= µ� ∂2

∂t2E . (14)

Then, to find the plane-wave solution for (17), substitute
E = E◦e−jkzejωtx̂ to obtain:

(−jk)2E + (µ�L + µL�) (jω)
2(−jk)2E (15)

+ µ�µL�L (jω)4(−jk)2E = µ� (jω)2E ,

so

−k2 + (µ�L + µL�) ω
2k2 − µ�µL�L ω4k2 = −µ� ω2 ,

or

ω2

k2
=

1− (µ�L + µL�) ω2 + µ�µL�L ω4

µ�
,

then

ω2

k2
=

�
1− ω2µ�L

� �
1− ω2µL�

�

µ�
,

and finally,
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where u is phase velocity as before, ω1 = 1/
√
µ�L, and ω2 =

1/
√
µL�.

For low frequencies where ω � ω1 and ω � ω2, (16) gives
the normal nearly-constant right-handed velocity governed by
u2 ≈ 1/(µ�). Taking the positive root, the phase velocity
becomes u = ω/k ≈ 1/

√
µ�, and the wavenumber becomes

k = ω
√
µ�. The group velocity is then vg = ∂ω/∂k = 1/

√
µ�.

And so, the system (9) is right-handed at low frequency, since
vg and u have the same sign [9].

At high frequencies where ω � ω1 and ω � ω2,
(16) gives a highly dispersive left-handed velocity set by
u2 ≈ ω4µL�L. Taking the positive root, the phase velocity
becomes u = ω/k ≈ ω2√µL�L, and the wavenumber
becomes k = 1/(ω

√
µL�L). The group velocity is then

vg = ∂ω/∂k = −1/(k2
√
µL�L). And so, the system (9) is

left-handed at high frequency, since vg and u have the opposite
sign [9]. In addition, there is a forbidden band between ω1

and ω2 where u2 is negative, k becomes imaginary, and the
solution is evanescent and does not propagate [7].

Again comparing the metamaterial model of (10) with the
gamma-ray model of (7), the two results are identical when
µ = µ◦, � = �◦, and a2 = µ◦�L = µL�◦ ≈ 1.74 × 10−68 s2.
Then the velocity in (16) becomes

u2 =

�
1− a2ω2

�2

µ◦�◦
= c2

�
1− a2ω

2
�2

, (17)

which equals the square of the gamma-ray result in (2). Note
also that a2 = µ◦�L = µL�◦ implies that ω1 = ω2 =
1/

√
µL� = 1/

√
µ◦�L. In this case, the forbidden band consists

of the single frequency, ω1 = ω2.
Finally, the gamma-ray model in (7) has the same form

as the metamaterial model in (10), and therefore will exhibit
the same general behavior. Thus, the gamma-ray model is
expected to show right-handed behavior at low frequency and



Fig. 1. Plot of phase velocity u normalized to the speed of light c as a
function of frequency in Hz.

left-handed behavior at high frequency. For the gamma-ray
model, the stop-band is expected to be a single frequency
separating the right-handed frequency band from the left-
handed band. In particular, the stop-band frequency based
on measured gamma-ray data is ω1 = ω2 = 1/

√
µL� =

1/
√
µ◦�L = 1/

√
a2 ≈ 1/

√
1.74× 10−68 = 7.58×1033 rad/s.

For the gamma-ray model (7), taking the positive root of (16)
the phase velocity becomes:

u =
ω

k
=

�����c
�
1−

�
ω

7.58× 1033

�2
������ , (18)

and is plotted in Fig. 1.
As illustrated in Fig. 1, the phase velocity u is a nearly

constant value of c for all frequencies of practical interest.
And so, it is only over astronomical distances that measurable
time delays are observed, even for a 31 GeV photon with a
frequency of 7.49×1024 Hz in gamma-burst GRB 090510 [6].
At high frequencies approaching the Planck frequency of
2.95 × 1042 Hz (corresponding to the Planck energy of
Ep = 1.22× 1028 eV), controversy over fundamental physics
remains [5]. And since the starting point in (1) is motivated
by a power-series approximation, care must be taken in any
interpretation of behavior at frequencies beyond the estimated
resonance at ω1 = ω2 ≈ 7.58× 1033.

IV. CONCLUSION

The dispersion observed in gamma-ray bursts suggests the
need for corresponding adjustments to the Helmholtz equation.
Even though the underlying dispersive mechanisms are not
well understood, previous investigators have focused on a
quadratic dispersion model, since experimental data disfavor
a linear model. Thus, a modified Helmholtz equation with
quadratic dispersion is presented to model propagation of
gamma rays. Although several forms of the equations are
possible, one form was chosen because of its symmetry.

In addition, the resulting added terms in the equations act
as dispersive extensions to Maxwell’s equations, preserving
normal behavior at low frequency while supporting dispersion
for high-frequency gamma rays. Ultimately, the choice of the
proper form of the Maxwell equations and the Helmholtz
equation may change as more experimental results on gamma-
ray bursts become available.
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