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Abstract – It is proposed that gravitational meta-atom unit cells with gravitomagnetic moments
could exhibit gravitomagnetic permeability, analogous to the magnetic permeability of materials
comprised of atoms with magnetic moments. Recently, a gravitoelectromagnetic (GEM) frame-
work was proposed to explore the possibility of a Veselago-inspired approach to gravitational
metamaterials. The prospect of gravitational metamaterials motivates the consideration of can-
didate gravitational unit cells or gravitational meta-atoms. Although mass serves as a monopole
source of a gravitoelectric field similar to positive charge, negative mass would be needed to
create a gravitational analog of an electric dipole. However, moving mass is analogous to elec-
tric current, and can lead to a gravitomagnetic dipole moment analogous to magnetic dipole
moments of magnetic materials and atoms. In this paper, GEM field approximations to gen-
eral relativity are used to find the gravitomagnetic dipole moment of different rotating systems,
ranging in scale from meters to astronomical size.

I. INTRODUCTION

Gravitoelectromagnetic (GEM) field equations have a long history, dating from Heaviside’s 1893 proposition
of a gravitomagnetic field, to more modern formulations based on weak-field solutions of the Einstein field equa-
tions [1–4]. The various formulations of GEM equations are similar to Maxwell’s equations of electromagnetism.
More recently, gravitationally-small radiators have been proposed as the basis for gravitational unit cells in [5, 6].
Of particular interest in the present work are the gravitomagnetic fields generated by rotating masses and the associ-
ated gravitomagnetic dipole moments, where gravitomagnetic dipole meta-atom unit cells may behave analogously
to atoms in conventional magnetic materials [7].

In this paper, we consider astronomical objects and small objects that exhibit a gravitomagentic dipole moment
that may form the basis for a gravitational unit cell. It is proposed that gravitational meta-atoms with gravitomag-
netic moments could exhibit gravitomagnetic permeability, analogous to the magnetic permeability of materials
comprised of atoms with magnetic moments. Such unit cells can be at astronomical scales while remaining grav-
itationally small, since observed gravitational waves are typically well below 1 kHz and orbital phenomina can
have hundred-year periods.

II. GEM EQUATIONS

More recently, gravitoelectromagnetic (GEM) field approximations to general relativity have been used in the
study of gravitational phenomena [3–5]. In GEM, gravitational analogs of the electric field and magnetic fields
result in the following GEM equations [4, 5].
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(a) (b)

Fig. 1: Gravitomagnetic field for a one-meter sphere with density 1000 kg/m3 and spin of 100 rad/s. (a) Computed
gravitomagnetic vector potential Ag . (b) Computed gravitomagnetic Bg in blue for the rotating sphere in red.
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where by comparison the left-hand equations are for electromagnetic fields and the right-hand equations are for
gravitational fields (where we retain the “Bg/2” terms in the equations above, following the form of equations
in [4]). Thus the GEM field equations are quite similar to Maxwell’s equations with charge in coulombs replaced
by mass in kilograms, and extra factors of 1/c appearing in Mashoon’s GEM equations. Above, Eg is in N·kg�1,
Bg is in N·kg�1, �g is in N·m·kg�1, Ag is in N·m·kg�1, ⇢m is mass density in kg·m�3, v is velocity in m/s, ✏g
= 1/(4⇡G) kg2·N�1·m�2, µg = 4⇡G/c N·m·s·kg�2, and ✏gµg = 1/c where c is the speed of light in vacuum. In
(6), the electromagnetic force F is determined by charge q, and GEM force Fg is determined by mass m. The less
familiar gravitomagnetic force term 2m

c v⇥Bg in (6) is observed in measurements of Lense-Thirring precession of
satellites [8]. The A-fields created by static magnetic and gravitomagnetic dipoles are
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where m is magnetic dipole moment in C·m2·s�1, mg is gravitomagnetic dipole moment in kg·m2·s�1, and Lg =
!Ig is the angular momentum in kg·m2·s�1 of a body with moment of inertia Ig rotating at ! rad/s. As an
example, Fig. 1 shows the gravitomagnetic Ag-field and Bg-field for a one-meter radius sphere (in red) with
density 1000 kg/m3 and a spin of 100 rad/s. This clearly demonstrates the analogous gravitatomagnetic fields
to electromagnetics with the gravitomagnetic Ag-field rotating around the origin and the gravitomagnetic Bg-field
resembling a magnetic dipole with the Bg-field going from its north pole to its south pole.

It is proposed that just as materials comprised of atoms with magnetic moments can exhibit magnetic permeabil-
ity, gravitational meta-atoms with gravitomagnetic moments could exhibit gravitatomagnetic permeability. Since
current gravitational waves typically have astrophysical sources below 1 kHz, it is of interest to consider gravita-
tional unit-cell candidates at various scales. Table 1 shows computed gravitomagnetic dipole moment for a range
of meta-atom scales from 1 m to the solar system, along with the periods, mass, and angular momentum of the
gravitational meta-atoms [9, 10]. The gravitomagnetic dipole moment in Table 1 was calculated from the angular
momentum mg = Lg , in accordance with (7), using values of Lg from [9, 10].
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Table 1: Comparison of Gravitomagnetic Dipole Moments†
Sun Earth Earth Jupiter Solar 1 m Radius
Spin Spin Orbit Orbit System Water Sphere

Period (s) 2.2⇥106 8.62⇥104 3.17⇥107 3.75⇥108 7.25⇥1015 ⇡/50
Mass (kg) 1.99⇥1030 5.97⇥1024 5.97⇥1024 1.90⇥1027 2⇥1030 4189
Gravitomagnetic Dipole
Moment mg (kg*m2/s) 1.92⇥1041 5.8⇥1033 2.67⇥1040 1.94⇥1043 3.32⇥1043 1.64⇥105

†Data in table is derived from [9, 10].

III. SUMMARY

Gravitational systems exhibit gravitomagnetic dipole moments, just as the atoms comprising conventional ma-
terials exhibit magnetic dipole moments. So, at astrophysical scales and the low frequencies of gravitational
phenomena, it is proposed that large-scale astronomical objects may serve as meta-atoms with gravitomagnetic
dipole moments. In this article, gravitomagnetic dipole moments were presented for gravitational meta-atom sys-
tems ranging in size from 1 m to the solar system. The extremely low frequencies of gravitational sources (such as
hundred-year orbits) would suggest that even large-scale gravitational systems may serve as meta-atoms at various
frequencies. It is even possible that gravitomagnetic dipole moments of the solar systems in a galaxy are in align-
ment with each other (similar to a ferromagnetic domain), under conservation of momentum theories for galactic
formation [11].
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