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Abstract—There is renewed interest in the use of non-Foster

circuit elements in a variety of important applications such as

wideband impedance matching and artificial magnetic conduc-

tors. Although non-Foster devices such as negative capacitors and

negative inductors can be realized using current conveyors and

Linvill circuits, a digital design approach may offer an important

alternative in some applications. Therefore, digital discrete-time

implementations of non-Foster circuit elements are investigated,

and simulation results are presented for the implementation of

a discrete-time negative inductor and a discrete-time negative

capacitor.

I. INTRODUCTION

Recently, there has been a resurgence of interest in the use
of non-Foster circuit elements to improve system performance
and bandwidth in a variety of applications such as impedance
matching networks, electrically small antennas, metamaterials,
and magnetic conductors [1]–[4]. In such applications, non-
Foster elements such as negative capacitors and negative
inductors are commonly realized using analog approaches such
as Linvill circuits and current conveyors [1], [5]–[7]. Although
such analog non-Foster circuits are well established, a digital
design approach may be advantageous in some applications.

Therefore, digital discrete-time implementations of non-
Foster circuit elements are considered [8]. In this digital
approach, the analog voltage at the input terminals is first digi-
tized with an ADC (analog-to-digital converter). The behavior
of the circuit is then established through digital signal process-
ing that determines the appropriate current for the measured
voltage. Finally, the current at the input terminals is established
by a current-output DAC (digital-to-analog converter). Such a
digital implementation offers the potential for well-controlled
circuit performance that is governed by the underlying digital
signal processing. In addition, digital implementation offers
potential for adaptive algorithms in complex systems and
for uniformity in systems such as metamaterials and arrays
comprised of many elements.

In the following section, the general approach and underly-
ing analysis is first described. In the two subsequent sections,
simulation results are given for example implementations of
a discrete-time negative capacitor and a discrete-time negative
inductor.

II. DIGITAL NON-FOSTER CIRCUIT ELEMENTS

A block diagram of a digital discrete-time implementation
of a non-Foster circuit element is shown in Fig. 1. In this, a
continuous-time analog input voltage v(t) is first digitized by

an ADC with clock period T to produce discrete-time output
v[n]. For the purposes of the present discussion, v[n] undergoes
signal processing in block H(z) to form the discrete-time
current output i[n] = v[n]⇤h[n], where ⇤ denotes convolution,
H(z) is the z-transform of h[n], and I(z) = H(z)V (z). In
other applications such as adaptive systems, the signal process-
ing H(z) can be more complicated than simple convolution.

In the final stage of Fig. 1, discrete-time current i[n] is
converted into continuous-time current i(t) by the current-
output DAC with clock period T , most commonly with ZOH
(zero-order hold) incorporated. Here, the input impedance of
the ADC and the output impedance of the DAC are assumed
to be infinite, for simplicity in the present analysis. Note also
that the concept illustrated in Fig. 1 can be applied to balanced
circuit elements, or to single-ended circuit elements with one
terminal grounded. The Laplace transform of input current i(t)
is then

I(s) = V ?(s)
H(z)(1� z�1)

s

����
z=esT

=
1X
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s
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, (1)

for integer m, and where V ?(s) =
P

v(nT )e�nsT for integer
n is the starred transform [9]. For signals sampled without
aliasing, the input impedance of Fig. 1 below the Nyquist

Fig. 1. Block diagram of digital discrete-time non-Foster circuit. Continuous-
time input voltage v(t) is digitized by the ADC into discrete-time signal
v[n], then processed by a discrete-time filter with z-transform H(z) to form
discrete-time current i[n], which is finally converted into continuous-time
input current i(t) by the DAC. As illustrated, the ADC and DAC would have
high impedance, I(z) = H(z)V (z), v[n] = v(nT ) and i[n] = i(nT ) for
integer n and clock period T .
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Fig. 2. Schematic in Keysight ADS simulator of a -25 pF discrete-time negative capacitor, with HC(z) = C(1� z�1)/T = �0.005(1� z�1). Source SRC1
is the system clock and sets the sample period at T , and 50 ⌦ input source PORT1 generates the input signal Vin which is sampled by sample-and-hold circuit
I 1 to generate sampled signal Vsam. The output Vdel of delay line I 2 corresponds to v[n � 1], and the output of differential buffer amplifier I 3 produces
�(Vsam � Vdel) corresponding to �(v[n]� v[n� 1]) with z-transform �V (z)(1� z�1). Voltage-controlled current source SRC2 generates the current Iin
seen by input terminal at PORT1 and monitored by current probe I probe.

frequency becomes

Z(s) =
V (s)

I(s)
⇡ sT

[(1� z�1)H(z)]

����
z=esT

(2)

for frequencies below 0.5/T Hz, assuming a ZOH incorporated
into the DAC.

III. A DISCRETE-TIME NEGATIVE CAPACITOR

For the purpose of illustrating the implementation of a non-
Foster circuit element using the approach of Fig. 1, a discrete-
time negative capacitor is first designed [8]. Since a capacitor
has i(t) = Cdv(t)/dt, a positive or negative capacitor may be
approximated by using the discrete-time backward-difference
approximation of the derivative dv(t)/dt ⇡ (v[n]�v[n�1])/T .
Using this approximation, the discrete-time current becomes
i[n] = C(v[n] � v[n � 1])/T . Taking the z-transform, this
becomes I(z) = C(1 � z�1)V (z)/T. Comparing this to
I(z) = H(z)V (z) in Fig. 1, and denoting H(z) for this
capacitor as HC(z), the required transfer function becomes

HC(z) =
C(1� z�1)

T
, (3)

where T is the ADC and DAC clock period, and C is the
desired capacitance. Also, note that C in (3) can be either
positive or negative. Thus, the overall input impedance Z(s)
from (2) and denoted ZC(s) for the capacitor is

ZC(s) =
sT

[(1� z�1)HC(z)]
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z=esT

=
sT 2

C(1� z�1)2
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⇡ 1

sC
, (4)

for frequencies below 0.5/T Hz, and assuming a ZOH incor-
porated into the DAC.

Fig. 2 shows a schematic diagram of an implementation of
a discrete-time negative capacitor using the Keysight ADS sim-
ulator. For simplicity and to make use of the ADS large-signal
S-parameter simulation to obtain the system input impedance,
the quantizer is omitted and analog samplers and delay lines
are used in simulating the digital filter. Thus, 50 ⌦ input
source PORT1 generates the input signal Vin which is sampled
by sample-and-hold circuit I 1 to generate sampled signal
Vsam. As seen in Fig. 3, Vsam is the expected zero-order-
hold sampled version v[n] of the input signal Vin. Then the
delayed signal Vdel in Fig. 2 representing v[n�1] is generated
by delay line I 2, with Vdel also shown in Fig. 3. Then, Vsum

Fig. 3. Keysight ADS transient simulation for Fig. 2 with 10 MHz input at
PORT1 and clock period T = 5 ns. Signals of Fig. 2 shown include: input
signal Vin, sample-and-hold output signal Vsam corresponding to v[n], Vdel
corresponding to v[n� 1], Vsum corresponding to �(v[n]� v[n� 1]), and
Iin in mA corresponding to i[n] and zero-order-hold DAC output i(t) of
Fig. 1.



Fig. 4. Keysight ADS large-signal S-parameter simulation results for Fig. 2
with T = 5 ns and design target C = �25 pF. The solid red curve is the real
part of input impedance ZC(s), and dashed blue curve is the imaginary part
of the input impedance ZC(s), as a function of sinusoidal input frequency in
Hz. The predicted impedance is +j637 ohms for �25 pF at 10 MHz, and
the observed impedance is �182 + j623 ohms at 10 MHz.

at the output of the differential unity gain buffer amplifier I 3
produces �(Vsam � Vdel) and represents �(v[n] � v[n � 1])
or �V (z)(1 � z�1). Voltage controlled current source SRC2
with transconductance 0.005 S generates the current Iin of
Fig. 3 as seen at the input terminals and monitored by current
probe I probe in Fig. 2. Source SRC1 is the system clock and
sets the sample period at T = 5 ns. Thus, the overall transfer
function HC(s) for Fig. 2 is HC(z) = C(1 � z�1)/T =
�0.005(1 � z�1), and so C = �25 pF. Note that the digital
functionality of Fig. 1 can also be implemented using analog
samplers and delay lines as illustrated in Fig. 2.

Fig. 4 shows simulation results for Fig. 2 with T = 5
ns and design target C = �25 pF. The solid red curve is
the real part of input impedance ZC(s), and dashed blue
curve is the imaginary part of the input impedance ZC(s).
The predicted impedance is +j637 ohms for �25 pF at 10
MHz, and the observed impedance is �182 + j623 ohms at
10 MHz, or �25.6 pF in series with �182 ohms. In addition,
the shape of the reactance approximately follows the expected
inverse frequency dependence of Im[Z(j!)] = +1/(!|C|) for
a negative capacitor. In this example, the reactance changes
sign beyond 60 MHz, and ceases being a positive reactance.
The anomalous impedance and abrupt change at 100 MHz is
at the Nyquist frequency 0.5/T , where the sampling theorem
is not satisfied.

The observed real part of ZC(s) follows from (4) where
ZC(s) = sT 2/[C(1 � z�1)2] = sT 2z/[C(1 � z�1)(z � 1)]
⇡ esT /(sC), and upon substituting z = esT ⇡ 1 + sT , yields
ZC(s) ⇡ esT /(sC) ⇡ 1/(sC) + T/C. Thus, the predicted
impedance at 10 MHz including the resistive component T/C
is approximately �200+ j637 ohms, in good agreement with
the observed impedance. For the same �25 pF capacitance,
this resistance can be lowered by changing the transconduc-
tance of SRC2 to 0.01 S and decreasing the clock period to
T = 2.5 ns. For this modified design, the predicted resistance
should decrease by half for �25 pF at 10 MHz, and this
reduced resistance is observed in the impedance of Fig. 5 with

Fig. 5. Keysight ADS large-signal S-parameter simulation results for Fig. 2
with T = 2.5 ns and design target C = �25 pF. The solid red curve is the
real part of input impedance ZC(s), and dashed blue curve is the imaginary
part of the input impedance ZC(s). As predicted, the observed impedance
of �91 + j529 ohms at 10 MHz shows that the low-frequency resistance is
decreased by half when compared to results of Fig 4.

�91 + j529 ohms at 10 MHz.

IV. A DISCRETE-TIME NEGATIVE INDUCTOR

Using the approach of Fig. 1, an example of a discrete-time
negative inductor design can also be considered [8]. Since an
inductor has a current i(t) = i(0) +

R
v(t)dt/L, it may be

approximated using the discrete-time accumulator approxima-
tion to the integral i(0)+

R
v(t)dt/L ⇡ i[0]+

P
v[n]T/L, and

setting i[n] = i[n� 1]+Tv[n]/L. Taking the z-transform, the
inductor current is I(z) = TV (z)/(L�z�1L). Denoting H(z)
for this inductor as HL(z), the transfer function becomes

HL(z) =
T

L(1� z�1)
, (5)

where T is the ADC and DAC clock period, and L is the
desired inductance. Also, note that L in (5) can be either
positive or negative. Thus, the overall input impedance Z(s),
denoted ZL(s), is

ZL(s) =
sT

[(1� z�1)HL(z)]

����
z=esT

⇡ sL , (6)

for frequencies below 0.5/T Hz, and assuming ZOH incor-
porated into the DAC. Alternatively, a positive or negative
inductor could be approximated by using the bilinear transform
approximation of the relation I(s) = V (s)/(sL), replac-
ing s by 2(z � 1)/[(z + 1)T ] and then yielding I(z) =
TV (z)(z+1)/[2L(z�1)] , so HL(z) = T (z+1)/[2L(z�1)]
in this case [8]. Similarly, the bilinear transform could be used
in the design of the capacitor.

Fig. 6 shows a schematic diagram of an implementation
of a discrete-time negative inductor using the Keysight ADS
simulator, along the same lines as Fig. 2. Fig. 7 shows
simulation results for Fig. 6 with T = 5 ns and design target
L = �1 µH. The solid red curve is the real part of input
impedance ZL(s), and dashed blue curve is the imaginary
part of the input impedance ZL(s). The predicted impedance



Fig. 6. Schematic in ADS simulator of a -1 µH discrete-time negative inductor, with i[n] = i[n � 1] + Tv[n]/L = i[n � 1] � 0.005v[n] and HL(z) =
T/[L(1 � z�1)]. Source SRC1 is the system clock and sets the sample period at T , and 50 ⌦ input source PORT1 generates the input (�65 ⌦ resistor R1
is used for stabilization, but later subtracted from results in Fig. 7). Signal Vin is sampled by sample-and-hold circuit I 1 to generate sampled signal Vsam.
SRC3 multiplies Vsam by 0.005. The output Vdel of delay line I 2 corresponds to i[n � 1], and the output of differential buffer amplifier I 3 produces
Vdel � 0.005Vsam corresponding to i[n� 1]� 0.005v[n]. Voltage controlled current source SRC2 generates the current Iin seen by input terminal at PORT1
and monitored by current probe I probe.

is �j62.8 ohms for �1 µH at 10 MHz, and the observed
impedance is �3.5 � j70 ohms at 10 MHz, or �1.1 µH in
series with �3.5 ohms.

V. CONCLUSION

The analysis for a general approach to implement digital
discrete-time non-Foster circuit elements was presented. Using

Fig. 7. Keysight ADS large-signal S-parameter simulation results for Fig. 6
with T = 5 ns and design target L = �1 µH. The solid red curve is the
real part of the input impedance ZL(s), and the dashed blue curve is the
imaginary part of the input impedance ZL(s), as a function of sinusoidal
input frequency in Hz. The predicted impedance is �j62.8 ohms for �1 µH
at 10 MHz, and the observed impedance is �3.5� j70 ohms at 10 MHz, or
�1.1 µH in series with �3.5 ohms.

this approach, results have been presented for a discrete-time
negative inductor and a discrete-time negative capacitor that
are in good agreement with the analysis. In addition, a design
technique to reduce the resistive component of the impedance
was presented.
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