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Abstract 

 
In difficult image segmentation problems, 

multidimensional feature vectors from filter banks provide 
effective classification within homogeneous regions.  
However, such bandlimited feature vectors often exhibit 
transitory errors at the boundaries between two regions.  
At boundaries, the feature vector may make a transition 
through a region of feature space that is incorrectly 
assigned to a third class.  To remove such errors, an N-
ary morphological operator is proposed.  The overall 
effect of the proposed operator resembles an N-ary 
morphological erosion followed by an N-ary dilation. 
 
1. Introduction 
 

In a variety of difficult image segmentation problems, 
filter banks are used to generate effective features for 
segmenting an image into different classes of interest [1]-
[6].  These filter outputs are then processed by a classifier 
to form a segmented image.  After forming the segmented 
image, narrow regions near the boundary between two 
different classes are occasionally misclassified as a third 
class.  This third “false class'' typically appears as a 
narrow strip of misclassified pixels at the boundary.  

These narrow misclassified regions can occur when the 
trajectory of the feature vector makes a transition through 
feature space at the boundary.  As the feature vector 
changes, it can pass through intermediate feature-space 
regions assigned to a third class unrelated to the two 
original classes forming the boundary.  Such misclassified 
regions incidentally appear to be present in the results of 
prior investigators including Fig. 11 of Jain et al. [1], Fig. 
7 of Unser [2], and Fig. 9 of Lu et al. [3].   

 A two-step hybrid “N-ary” postprocessing operation is 
proposed to remove these narrow misclassified regions.  
In the first step, pixels in regions whose neighborhood 
consists entirely of one texture class are left unchanged; 
otherwise, the pixel value is set to zero to indicate it is no 
longer assigned to any class. The neighborhood size is 
chosen to be proportional to spatial extent of filter-
channel response.  This first step resembles a 

morphological erosion operation.  In the second step, the 
classified regions are propagated back into the unassigned 
regions based on the most common class within 8-
neighborhoods.  This second step resembles a 
morphological dilation operation.  The combined effect of 
these two steps is effective in removing the narrow 
misclassified strips at boundaries between regions. 

In the following, details of the proposed method are 
developed.   Then experimental results are presented 
showing the efficacy of the proposed method.  
 
2. Approach 
 

Before describing the proposed method, a one-
dimensional example will be used to describe the 
underlying problem.  In this example, optimal 
classification thresholds are first calculated for three 
Gaussian-distributed classes.  Then, a step boundary is 
blurred by a spatial Gaussian filtering operation to 
simulate the effects of a Gabor-filtered feature.  Finally, it 
is shown that an inevitable band of misclassified pixels 
results near the boundary, because of the band-limited 
spatial filtering.  A solution to this problem is proposed in 
the following section. 

To illustrate the transient misclassifications that can 
occur at region boundaries, consider the situation in Fig. 
1, with three probability density functions corresponding 
to the output of a single filter channel for three different 
classes.  It is straightforward to compute optimum 
thresholds, assuming equal a priori likelihood of the three 
classes [10].   For the example of Fig. 1, the optimal 
thresholds would be at gray-levels 48 and 165 (other 
solutions do not contribute materially to the present 
example).   Then, gray-level amplitudes from 0 to 48 are 
classified as class 1, from 48 to 165 are classified as class 
2, and above 165 is classified as class 3.   

Next, consider the one-dimensional version of a step 
boundary between class 1 and class 3 as illustrated by the 
dashed blue step in Fig. 2.  Nominally, this boundary 
would change from the mean output for class 1,   µ1=30, 
to the mean of class 3, µ3=210.   However, the step 



 
Figure 1. Three Gaussian probability density 
functions corresponding to filter output features for 
three different classes: class 1 solid red pdf with 
µµµµ1=30, σσσσ1=6; class 2 dotted blue pdf with µµµµ2=90, 
σσσσ2=15;  class 3 dashed magenta pdf with µµµµ3 = 210, 
σσσσ3=9. The optimum classification thresholds for 
these three pdfs would be at gray-levels 48 and 165. 

 
Figure 2. Filtered one-dimensional step boundary, 
stepping from class 1 (µµµµ1=30) to class 3 (µµµµ3=210). 
Solid red curve is a Gaussian filtered boundary 
with σσσσx=2.5.  Dashed blue curve is underlying step 
boundary.  Dotted magenta lines correspond to 
optimum thresholds from Fig. 1. The region 
between the two optimum gray-level thresholds of 
48 and 165 is misclassified as class 2, with 
misclassified pixels beginning 3 units to the left 
and ending 2 units to the right of the actual 
boundary location. 

response at the filter channel output is necessarily 
smoothed by the filter's limited bandwidth.   

To illustrate the response of a bandlimited channel, the 
step boundary is passed through a lowpass Gaussian filter 
with spatial-domain standard deviation σx=2.5.  The 
resulting smoothed boundary is shown as the red solid 
curve in Fig 2.  The two optimum classification thresholds 
from Fig. 1 are shown as the horizontal dashed lines in Fig 
2.   The classifier then makes a correct assignment of class 
1 for points more than 3 units to the left of the  step,  and  
makes a correct assignment of class 3 for points more than 
2 units to the right of the step.  However, points in the 
central region from -3 to +2 units relative to the 
underlying step are incorrectly classified as class 2.  Other 
bandlimited filters would exhibit a similar 
misclassification in the transition region.   This problem of 
incorrect classification at region boundaries becomes 
considerably more complicated in the multi-dimensional 
case of a multi-channel filter bank and is beyond the scope 
of the present work.        

In practice, these misclassifications near boundaries 
seem to occur more frequently when the number of filter 
channels or feature vectors is less than or equal to the 
number of classes being segmented.  This relationship is 
thought to be some sort of topological dependency 
between the dimensionality of the classifier and the 
number of classes.  For one-dimensional systems, the 
foregoing boundary misclassification problem does not 
occur when there are only two classes, but always occurs 
when there are more than two classes.  In the one-
dimensional case of Fig. 1, transitions between the 
outermost classes must always pass through the middle 
class. 

The example of Fig. 2 is repeated in Fig. 3 in two 
dimensions.  Fig. 3(a) is an image comprised of three 
Gaussian-distributed random gray levels, and Fig. 3(b) is 
the resulting image after filtering Fig. 3(a) with a Gaussian 
lowpass filter with spatial standard deviation of 1.5 pixels. 

The dark outer border of Fig 3(b) is comprised of class 
1, corresponding to the leftmost pdf in Fig. 1, and the left 
side of the step boundary in Fig. 2.  The bright left-inner 
rectangular region of Fig. 3(b) is comprised of class 3, 
corresponding to the rightmost pdf in Fig. 1 and the right 
side of the step boundary in Fig. 2.    The medium gray 
right-inner rectangular region of Fig. 3(b) is comprised of 
class 2, corresponding to the central pdf in Fig. 1.   

Finally, the classified output image in Fig. 3(c) shows a 
narrow band of  misclassified pixels at the boundary 
between class 1 (dark gray) and class 3 (white) that are 
misclassified as class 2 (medium gray).  The border is 
correctly classified as class 1 (dark gray), and the center –
left region is correctly classified as class 3 (white).  Also, 
note that the narrow misclassified band does not occur at 
boundaries between class 1 and class 2, or at boundaries 
between class 2 and class 3.  The misclassified band only 
occurs at boundaries between class 1 and class 3, since 
this is the only case where the filtered image gray-level 
transient response passes through an intermediate gray-
level corresponding to a third class as illustrated in Fig. 2. 

 
 

3. Proposed Operator 
 



 

       
 
  (a)             (b)      (c) 
 
Figure 3. Two-dimensional example of misclassification. (a) Input 64x64 pixel composite image, outer border is 
Gaussian noise class 1 with µµµµ1=30, σσσσ1=18, right inner rectangle is class 2 with µµµµ2=90, σσσσ2=45, and left inner 
rectangle is class 3 with µµµµ3 = 210, σσσσ3=27.  (b) Output of Gaussian lowpass filter with spatial standard deviation 
of σσσσx=1.5 pixels.  After filtering, class 1 µµµµ1=30, σσσσ1=3.3, class 2 µµµµ2=90, σσσσ2=8.2, and class 3 µµµµ3 = 210, σσσσ3=5.2, 
analogous to pdfs in Fig. 1.   (c) Segmentation using optimal thresholds of 47 and 163, with the yellow arrow 
pointing at the narrow band of medium gray pixels misclassified as class 2 at the boundary  between class1 
and class 3.  Note that similar narrow bands of misclassified pixels do not occur at other types of boundaries.   
 

The proposed method for eliminating the narrow 
misclassified regions proceeds in two steps, beginning 
with a previously classified image c(x,y), where 
c(x,y)∈{1,2,3,…,N}  and N is the number of classes.  In 
the first step, boundary regions are reset to an unclassified 
state. In the second step, classes are propagated back into 
the unclassified regions.  Details are given below. 

In the first step, pixels in the classified image c(x,y) 
whose  neighborhood  consists entirely of one class are 
left unchanged;  otherwise, the pixel value is set to zero to 
indicate that the pixel is no longer assigned to any class.  
The declassification of these pixels creates a new image 
iS,0(x,y): 
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where B is a local neighborhood typically chosen in some 
proportion to the spatial extent of the filter channel 
impulse responses.  

In the second step, classified regions are propagated 
back iteratively into the unassigned regions. Each 
unassigned pixel is assigned to the most prevalent class 
within the 8-neighborhood surrounding the pixel. 
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where lmax is the nonzero pixel value that occurs the 
greatest number of times in the 8-neighborhood, iS,n(x,y) is 
the image at iteration n. In the event of a tie in 
determining lmax, the pixel is arbitrarily assigned to one of 
the prevalent classes (other schemes are possible).  Step 2 
is repeated until all pixels are non-zero, giving the final 
segmented image iS(x;y). This propagation affects only 
unassigned pixels and ceases when all unassigned pixels 
have been assigned to one of the N classes. 

 
4. Results 
 

The proposed method is shown in Fig. 4 applied to the 
results of Fig. 3.  Fig. 4(a) shows the misclassified image 
results from Fig 3(c).  Fig. 4(b) shows the output, iS,0(x,y), 
after the first stage of the proposed processing, with 
declassified pixels shown in black.   Finally, the 
segmented image after all postprocessing, iS(x,y), is 
shown in Fig. 4(c).  All transient misclassifications are 
removed. 

The proposed method has also been tested on a wide 
range of natural and synthetic 256×256 pixel 8-bit gray-
scale images.  In these images, the average gray scale was 



 

      
 
  (a)             (b)                    (c) 
 
Figure 4.  Proposed postprocessing.  (a) Segmented image from Fig. 3(c) showing ring of misclassified pixels at 
boundary between inner region and outer border.  (b) Output iS,0(x,y) after first stage of proposed processing, 
with declassified pixels shown in black.  (c) Final output after final stage of postprocessing, showing classified 
regions propagated back into declassified region.  Narrow band of misclassified pixels indicated by yellow 
arrow in (a) is removed in (c). 
 

equalized to prevent biased segmentation results due to 
leakage of the DC component through the filters [4]-[6]. 

The results in Fig. 5 illustrate the effects of the 
proposed method on misclassifications at texture 
boundaries. The image in Fig. 5(a) consists of an 
outermost region of Gaussian-distributed lowpass noise, a 
middle ring of “French canvas", and an innermost square 
region of “straw matting" from the Brodatz album [7]. 

Fig. 5(b) is the classifier output c(x,y) without the 
proposed method.  A prominent band of misclassified 
pixels is seen along the entire boundary between the 
outermost texture (noise) and the middle ring of texture 
(French canvas). Applying the proposed operator to Fig. 
5(b) results in the final segmented image iS(x,y) in Fig. 
5(c). Comparing Fig. 5(b) and (c), the pixels misclassified 
as a third texture at the texture boundary are removed by 
the proposed methods.    

 
5. Conclusion 
 

An N-ary morphological operator is presented for the 
removal of narrow bands of misclassified pixels near 
boundaries.  The first step of the proposed operator 
resembles an N-ary erosion, where pixels in certain 
inhomogeneous regions are temporarily declassified.  The 
second step resembles an N-ary dilation as regions grow 
to fill in the temporarily declassified regions from the first 
step.     

In addition, a one-dimensional example is used to 
illustrate the inevitability of transient misclassifications at 
region boundaries.  The transients arise as a consequence 
of the bandwidth of a filtering process, as is commonly 
used to generate feature vectors.  An example is given 

where the transient response of the filter must pass 
through regions of feature space causing erroneous 
classification.  As a filtered image makes a transition 
between the mean amplitudes of two classes comprising a 
boundary, the feature amplitude may have to pass through 
an intermediate amplitude level erroneously assigned to a 
third class. 
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Figure 5.  Effect of proposed post-processing. (a) Input composite image, outer border of Gaussian noise, 
middle ring of “french canvas," center square of “straw matting."  (b) Output of classifier without post-
processing showing a narrow ring misclassified as the center texture at the boundary between the two 
outermost textured regions.   (c) Final segmentation after post-processing to remove misclassification at 
texture boundaries, measured segmentation error = 0.05.    
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