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Abstract—Measurements and theory are presented for digital
discrete-time implementations of series non-Foster negative RLC
(resistor-inductor-capacitor) circuits and series positive RLC
circuits. This new digital RLC design approach builds upon
recent digital implementations of other non-Foster circuits such
as negative RC (resistor-capacitor) and negative RL (resistor-
inductor) circuits. Such digital implementations of non-Foster
circuits have shown promise in addressing common design
challenges, such as stability, that may be more difficult to
control in analog non-Foster circuits. Furthermore, a digital
approach offers inherent potential advantages in applications
such as software-tunable or adaptive digital implementations of
negative RLC or positive RLC circuits. To confirm the proposed
approach and underlying theory, simulation results and prototype
measurements are provided that demonstrate the efficacy of
digital implementations of both positive RLC and negative RLC
circuits.

I. INTRODUCTION

Non-Foster circuits, such as negative capacitors and negative
inductors, have the potential to improve the performance of
a wide range of existing technologies such as impedance
matching networks [1], electrically small antennas [2], [3],
and software defined radios [4], [5] as well as enabling a
number of unusual emerging technologies such as magnetic
conductors [6], microwave metamaterials [7], [8], and acoustic
invisibility [9], [10]. Although analog non-Foster circuits were
first realized over 60 years ago [11], difficult design chal-
lenges such as circuit stability remain. Digital discrete-time
implementations of non-Foster circuits, recently pioneered
in [12], have the potential to offer solutions to previous design
challenges by leveraging advantages of digital technologies.
Furthermore, digital implementations of non-Foster circuits
are likely to be advantageous in the design of adaptive and
software-tunable systems [13].

The current work extends the digital discrete-time non-
Foster RC circuit of [14] to a Thévenin-form digital non-
Foster series RLC (resistor-inductor-capacitor) circuit. Prior
non-Foster RLC circuits have been limited to analog imple-
mentations [15]-[17]. Strictly, a Foster circuit is comprised
only of lossless positive inductors and capacitors [18]. Hence,
circuits containing negative capacitors and/or negative induc-
tors are often loosely referred to as non-Foster circuits. In the
following, “negative RLC” refers to circuits having negative
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capacitance and negative inductance. The proposed approach
implements positive or negative RLC digitally, using an ADC
(analog-to-digital converter), digital signal processing, and
DAC (digital-to-analog converter). Also, stability conditions
are are determined for the digital positive RLC and digital
negative RLC cases.

In the following section, digital discrete-time theory for a
digital RLC circuit is presented. Section III provides root locus
stability analysis to determine stable regions of operation.
Simulation and measurement results, which compare favorably
with theoretical values, are presented and discussed in sections
IV and V, respectively.

II. DIGITAL DISCRETE-TIME RLC THEORY

The desired (positive or negative) analog series RLC be-
havior is illustrated in Fig. 1(a), and the block diagram of the
proposed digital RLC implementation is shown in Fig. 1(b).
The objective is to design signal prcessing H (z) such that the
impedance looking into the right-hand dashed box of Fig. 1(b)
approximates the desired analog series RLC impedance of
Fig. I(a). The approach of Fig. 1(b) builds upon digital
non-Foster RC and RL results in [14], but with new signal
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Fig. 1. (a) On the left side of the image is a series analog RLC circuit which
is implemented in discrete-time through signal processing block H(z). (b)
The block diagram of a Thévenin form digital discrete-time circuit is shown
on right side of image [12]. Analog input voltage v;, (t) is converted into
discrete-time signal v;, [n] = vy (nT') by the ADC with clock period T'. The
signal is then processed by discrete-time filter H(z) resulting in vgqc[n] =
h[n] * vin [n], which is then converted into analog vg,.(t) by the DAC. The
DAC output resistance is modeled as R, and time delays are modeled as
latency 7. The circuit is driven by an external Norton current source i (t)
with source resistance Rs [19].
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processing H(z) designed for for implementation of a digital
negative RLC circuit and a digital positive RLC circuit.

Consider the digital discrete-time circuit in the right-hand
dashed box of Fig. 1(b). Analog input voltage v;,(t) is
converted by the ADC with clock period T into discrete-
time signal v;, [n] = v;, (nT). Next, the signal passes through
digital signal processing block H(z), generating convolution
output vgec[n] = h[n] x vip[n], where H(z) is the z-transform
of h[n]. Lastly, vgq.[n] is converted into analog signal vy, (%)
by the DAC. Latency effects are included as time delay T,
and can arise from ADC and DAC conversion times, and
from computation time. The input current is then i;,(t) =
[Vin(t) — Vdac(t)]/ Rdac, Where resistor Ry, is the Thévenin
source impedance of the DAC. The Laplace transform of
Vdac(t), under the assumption the DAC has a ZOH (zero or-
der hold), is Vaac(s) = V*(s)H(2) (L —271) e /5| ___.r,
where V*(s) = 3" v(nT)e T is the starred transform [20].
The input impedance of the digital discrete-time circuit in the
right-hand dashed box of Fig. 1(b) is then [14]

Vin(s) _ ST Riqec
Lin(s) ~ sT—H()(1—zYe | _ .’

Zin(s) = ey

for signals without aliasing and for frequencies below
0.5/T Hz.

Next, consider an analog series RLC circuit as shown on
the left in Fig. 1, where v;,, (t) = 44, (t) Rser + Ldiin (t)/dt +
[ iin(t)dt/C. Taking the derivative yields dv,(t)/dt =
Rgerdiiy (t)/dt + Ld?iin(t)/dt? + i (t)/C. Approximating
dvin (t)/dt = (vin[n] — vip[n — 1))/T and di;,(t)/dt =

(iin [n] — din[n — 1])/T results in (vip[n] — vip[n — 1])/T

Rser(zin[n] — Zzn [n - 1])/T + L(zm[n] — len n — 1_]
+iin[n — 2])/T? + iin[n]/C. Then, substituting i;,[n] =
(Vin[n] — Vdac[n])/ Rdac results in
Vin[n] —vin[n —1]
T 2
Rse”‘ . . 1 1
TR (vin[n] = vin[n — 1] = Vdac[n] + Vdac[n — 1])
L
+ RouT? (Um [n] = 2vin[n — 1] + vin[n — 2]
- 'Udac[n] + 2vdac[n - 1] - Udac[n - 2])
1
+ CRas (vin[n] — vdac[n]) -

After rearranging and taking the z-transform, the transfer
function for the series RLC circuit becomes

Hrrc(2) = Viac(2)/Vin(2) = 3)
(T? + LC — CRaueT + CRyerT)2*
(T? ¥ ORoer T + LOY22 + (—2LC — CRuerT)z + LC
(CRuacT — 2LC — CRueT)z + LC
(T2 + CRoerT + LC)22 + (—2LC — CRueyT)z + LC

+

Note that the foregoing relations apply for implementations of
digital negative RLC circuits (with L and C negative) as well
as digital positive RLC circuits (with L and C' positive).
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Fig. 2. Root locus stability analysis performed on (4) for a digital non-
Foster negative RLC example, varying Rse, from —800 ohms to 200 ohms,
with stability for Rser < 200 ohms, and instability for Rge, > 200 ohms.
Other system parameters were 7' = 1.22 us, C' = —5 nF, L = —2 mH,
Rgqec = 1000 ohms, and 7 = 1.22 us. Poles are represented by ”X” and
zeros by 70”. Rs=50.

IIT. STABILITY ANALYSIS

For the purpose of stability analysis, the discrete-time
closed-loop pulse transfer function of the current source
and digital discrete-time circuit, of Fig. 1(b), must be ex-
amined. Consider the closed-loop transfer function G(s) =
I (s)/Is(s), where I;,(s) is the current seen at the input
to the digital circuit inside the dashed box on the right of
Fig. 1(b), and I,(s) is the source current in the dashed box on
the left of Fig. 1(b). The corresponding discrete-time closed-
loop pulse transfer function G(z) is then [20]

Iin(2)  RezH(2)/Rdac
I,(2) 14+ Rz H(2)/Raac

where R, = RsRyuc/(Rs + Raac) is the parallel combi-
nation of the DAC output resistance and the signal source
impedance, A is the latency in clock cycles with 7 = AT, and
Vin(2)H (2)2~* / Rgqc would be the Norton-equivalent current
of the Thévenin source comprised of the voltage-output DAC
in series with Rg,. on the right of Fig. 1(b). The system
is stable as long as the poles of G(z) lie within the unit
circle [20].

A root locus analysis is used (4) to determine the stability
of the system in Fig. 1(b) when H(z) = Hgpc(2) for both
a negative RLC example and a positive RLC example, as the
series resistance parameter R, is varied. The root locus is
shown in Fig. 2 for a negative non-Foster RLC example, and
in Fig. 3 for a positive RLC example.

For the negative RLC case of Fig. 2, R, is varied from
Rger = —800 ohms to R, = 200 ohms in steps of 250 ohms.
Other system parameters were 1" = 1.22 us, C' = —5 nF,
L = —2 mH, Rg,. = 1000 ohms, A = 1, and 7 = 1.22 pus.
In Fig. 2, the edge of stability occurs at Rg.,. ~ 200 ohms

G(z) =
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Fig. 3. Root locus stability analysis performed on (4) for a digital positive
RLC example, varying Rgser from —300 to 500 ohms, with stability for
Rser > —300 ohms, and instability for Rser < —300 ohms. Other system
parameters were 7' = 1.22 us, C = 5 nF, L = 2 mH, R4, = 1000 ohms,

1.1 14 1.7 2

and 7 = 1.22 us. Poles are represented by ”X” and zeros by "0”. Rg=5().

with the system stable when Rg.,. < 200 ohms and unstable
when R, > 200 ohms.

The root locus for the positive RLC case is shown in Fig. 3,
where the capacitance is C' = 5 nF, the inductance as L =
2 mH, and the remaining parameters were unchanged. R, is
varied from Rg., = —300 ohms to Rg.,, = 500 ohms in steps
of 100 ohms. For the positive RLC case, the edge of stability
occurred at Rg., =~ —300 ohms with system stable when
R, > —300 ohms and unstable when R,.,. < —300 ohms.

IV. SIMULATION RESULTS

The digital discrete-time circuit of Fig. 1(b) was simulated
in the Keysight ADS large-signal S-parameter simulator to de-
termine the input impedance Z;,,(s) with H(z) = Hrrc(2).
The simulation was performed for both a negative RLC
example and and a positive RLC example.

For the root-locus example of Fig. 2, simulation results
are given in Fig. 4 for a digital negative RLC example
with C = —5 nF, L = —2 mH, and R,.,. = 150 ohms.
Other system parameters were a DAC output resistance of
Rgjqc = 1000 ohms, a period of T" = 1.22 us, and a latency
7 = 1.22 us or one clock cycle. Simulation results are plotted
along with theoretical input impedance from (1). In Fig. 4,
the solid red curve and dotted blue curve represent the real
and imaginary part of the theoretical input impedance Z;,
respectively. The imaginary part of an ideal (R=0) analog
negative LC is shown as the black dash-dotted curve. The real
and imaginary parts of the simulated input impedance are rep-
resented by short-dash magenta and the long-dash cyan curve
respectively. In Fig. 4, at f ~ 40 kHz, when the circuit is be-
having as a negative capacitor, the theoretical input impedance
is Z;, = —217 4+ j270 ohms compared with a simulated
impedance of Z;, = —145 + j304 ohms. The positive reac-
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Fig. 4. Simulation results for the negative RLC circuit of Fig. 1 versus
theoretical results calculated from equation (1) when H(z) = Hgrc.
The system parameters are 7' = 1.22 us, C = —5 nF, L = —2 mH,

Rger = 150 ohms, Rg,. = 1000 ohms, and 7 = 1.22 us. Solid red curve
is theoretical Re(Z;y,), short-dash magenta is simulated Re(Z;y,), dotted-
blue curve is theoretical Im(Z;y,), long-dash cyan is simulated Im(Z;y,),
and black dash-dotted curve is ideal Im(Z;y,).

tance is associated with the negative capacitance of decreasing
magnitude as the frequency increases. At f =~ 60 kHz, when
the circuit is behaving as a negative inductor, the theoretical
input impedance is Z;, = 188 — j304 ohms compared with
a simulated impedance of Z;,, = 170 — 5372 ohms. The
negative reactance is associated with the negative inductance
of increasing magnitude as the frequency increases.

For the root-locus example of Fig. 3, simulation results are
given in in Fig. 5 for a digital positive RLC example with C' =
5nF, L = 2mH, and R,.,, = —150 ohms, and all other system
parameters the same as the negative RLC. Simulation results
are again plotted along with theoretical input impedance from
(1), with real and imaginary parts of Z;, plotted in solid red
curve and dotted blue respectively for theory, and plotted in
short-dash magenta and the long-dash cyan respectively for
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Fig. 5. Simulation results for the positive RLC circuit of Fig. 1 versus
theoretical results calculated from equation (1) when H(z) = Hgrc.

The system parameters are 7' = 1.22 us, C = 5 nF, L = 2 mH,
Rser = —150 ohms, R4, = 1000 ohms, and 7 = 1.22 us. Solid red curve
is theoretical Re(Z;y,), short-dash magenta is simulated Re(Z;y,), dotted-
blue curve is theoretical Im(Z;y, ), long-dash cyan is simulated Im(Z;y,),
and black dash-dotted curve is ideal Im(Z;y,).
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Fig. 6. Measurement results for the negative RLC circuit of Fig. 1 versus
theoretical results calculated from equation (1) when H(z) = Hgrc.
The system parameters are 77 = 1.22 us, C = —5 nF, L = —2 mH,

Rgser = 150 ohms, Rg,. = 1000 ohms, and 7 = 1.22 pus. Solid red curve
is theoretical Re(Z;y, ), short-dash magenta is simulated Re(Z;y), dotted-
blue curve is theoretical Im(Z;y,), long-dash cyan is simulated Im(Z;y,),
and black dash-dotted curve is ideal Im(Z;y,).

the simulation. The imaginary part of an ideal (R=0) analog
positive LC is shown as the black dash-dotted curve. In Fig. 5,
at f =~ 40 kHz, when the circuit is behaving as a positive
capacitor, the theoretical input impedance is Z;, = 146 —
7226 ohms compared with a simulated impedance of Z;, =
139—35229 ohms. At f ~ 60 kHz, when the circuit is behaving
as a positive inductor, the theoretical input impedance is Z;,, =
—14 + 7313 ohms compared with a simulated impedance of
Zin = 6 + 7296 ohms.

V. PROTOTYPE AND MEASUREMENTS

The system of Fig. 1 was prototyped using the NXP FRDM-
K64F development board. The board features an on board
16-bit ADC and 12-bit DAC. To implement the series RLC
circuit, Hrrc from (4) was programmed onto the board for
both the negative RLC circuit, with negative L and negative C,
and the positive RLC circuit, with positive L and positive C.
Parameters common to both cases were Rj,. = 1000 ohms,
7 =1.22 ps, and T' = 1.22 pus. The period T' was determined
as a result of the achievable computation time and ADC clock
frequency for the the NXP FRDM-K64F board, with a final
effective sampling rate of approx. 0.82 MHz.

Measurements for the negative RLC circuit (C' = —5 nF,
L = -2 mH, R, = 150 ) and positive RLC circuit (C =
5nF, L =2 mH, R, = —150 2) are shown in Fig. 6 and
Fig. 7 respectively, along with the predicted theoretical input
impedance Z;, from (1). In both figures the solid red curve
is the real part of theoretical input impedance, and the short-
dash magenta curve is the real part of the simulated input
impedance. The dotted blue curve is the imaginary part of
the theoretical input impedance, and the long-dash cyan curve
is the imaginary part of the simulated input impedance. The
imaginary part of an ideal (R=0) analog negative LC is shown
as the black dash-dotted curve.

The digital discrete time negative RLC circuit measurements
in Fig. 6 were for a capacitance C' = —5 nF, an inductance

750

|
A

ﬂ’W

J

500

L

-

Ohms

(===mRe(Zin) Theory
o e o eIm(Zin) Theory

@» eRe(Zin) Meas
L o T Im(Zin) Meas

o @mmm|deal RLC

0 0.05 0.1 0.15 0.

2 0.25 03 0.35
Frequency (MHz)

Fig. 7. Measurement results for the positive RLC circuit of Fig. 1 versus
theoretical results calculated from equation (1) when H(z) = Hgrrc. The
system parameters are 7" = 1.22 us, C' = 5 nF, L = 2 mH, Rger =
—150 ohms, R4, = 1000 ohms, and 7 = 1.22 pus. Solid red curve is
theoretical Re(Z;y,), short-dash magenta is simulated Re(Z;y,), dotted-blue
curve is theoretical I'm(Z;y), long-dash cyan is simulated Im(Z;, ), and
black dash-dotted curve is ideal Im(Z;y,).

of L = —2 mH, and a series resistance of R,., = 150 ohms.
At f =~ 38 kHz the theoretical input impedance is Z;, =
—247 + 5358 ohms compared with a measured impedance of
Zin = —355 + j321 ohms. At f ~ 53 kHz the theoretical
input impedance is Z;, = —34 — 5127 ohms compared with
a measured impedance of Z;,, = —135 — j151 ohms.

The digital discrete time positive RLC circuit measurements
in Fig. 7 were for a capacitance of C' = 5 nF, an inductance
of L = 2 mH, and a series resistance of R, = —150 ohms.
At f =~ 44 kHz the theoretical input impedance is Z;, =
126 — 5120 ohms compared with a measured impedance of
Zin = 104 — 7104 ohms. At f = 52 kHz the theoretical input
impedance is Z;,, = 71+ 787 ohms compared with a measured
impedance of Z;, = 66 + 582 ohms. The prototype system
of Fig. 1 using the NXP FRDM-K64F development board is
shown in Fig. 8.

VI. CONCLUSION

A digital negative RLC circuit, with negative inductance and
negative capacitance, and a digital positive RLC circuit, with
positive inductance and positive capacitance, were presented.
Stable regions of operation were determined using stability
conditions and a root locus analysis. Simulation and measure-
ment results were in agreement with theory for both the digital
negative RLC and digital positive RLC cases.

Fig. 8. NXP FRDM-K64F development board prototype.
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