
Designing Multiple Gabor Filters for Multi-Texture Image

Segmentation

Thomas P. Weldon and William E. Higgins,†

Department of Electrical and Computer Engineering, University of North Carolina at Charlotte
†Department of Electrical Engineering, The Pennsylvania State University

Abstract

We consider the problem of segmenting multi-
textured images using multiple Gabor filters. In par-
ticular, we present a mathematical framework for a
multichannel texture-segmentation system consisting
of a parallel bank of filter channels, a vector classifier
stage, and a postprocessing stage. The framework
establishes mathematical relationships between the
predicted texture-segmentation error, the frequency
spectra of constituent textures, and the parameters
of the filter channels. The framework also permits
the systematic formulation of filter-design procedures
and provides predicted vector output statistics that
are useful for classifier design. This paper focuses
on the mathematical framework and provides exper-
imental results that confirm the utility of the frame-
work in the design of a complete image-segmentation
system. The results demonstrate effective segmenta-
tion using a straightforward classifier and fewer than
half the number of filters needed in previously pro-
posed approaches.

Subject terms: Gabor prefilter, Gabor filter, Gabor
function, texture segmentation, statistical image analysis,
texture analysis, computer vision, image segmentation.

1 Introduction

Gabor filters have been employed in such diverse
applications as texture segmentation,1–12 image re-
trieval,13 document analysis,14,15 image coding,16,17

retina identification,18 character recognition,19 tar-
get detection,20,21 fractal dimension measurement,22

edge detection,23 line characterization,24 medical im-
age compression,25 and image representation.26 De-
spite such wide ranging applications, a variety of
issues still remain when considering the problem
of designing multiple Gabor filters for segmenting

multi-textured images. Can a small number of well-
designed filters effectively segment an image? Can
detailed mathematical criteria be developed that lead
to the specification of effective filters? Based on the
mathematical criteria, can efficient filter-design pro-
cedures be devised? To address these issues, we pro-
pose a comprehensive mathematical framework for
segmenting multi-textured images using multiple Ga-
bor filters. 1

Prior investigators have explored a variety of ap-
proaches to texture segmentation using Gabor filters.
We group these efforts into two categories: filter-bank
approaches where the Gabor filters are selected from
some predetermined subband, wavelet, or other de-
composition partitioning the frequency plane, and
filter-design approaches where the Gabor filters are
designed for a specific texture-segmentation task.

A number of different filter-bank approaches have
been proposed. A wavelet decomposition modeled
after biological vision systems was used by Daug-
man,16 and a similar decomposition was used by
Jain and Farrokhnia.3 Other decompositions were
proposed by Randen and Husøy,29 Unser,5 Raghu
and Yegnanarayana,30 Wu and Bhanu,31 Manjunath
and Ma,13 Manjunath and Chellapa,32 Tang et al.,33

Turner,34 Malik and Perona,35 Bigün and du Buf,8,36

Chang and Kuo,37 and Lu et al.12 In these ap-
proaches, the frequency domain was subdivided in
various ways using a set of predetermined candidate
filters that were not necessarily optimal for a given
texture-segmentation task. The number of filters in
the resulting filter banks can also present an unac-
ceptable computational burden for certain applica-
tions. Furthermore, large feature-vector dimensions
at the output of a large filter bank may require a com-
plicated classifier and may be subject to “the curse

1
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of dimensionality”.38 Although Tang et al.33 reduced
the number of filters to two, their method focuses on
bipartite (two-texture) segmentations. Finally, filters
in wavelet decompositions imply an initial decompo-
sition of the frequency domain; also, the sensitivity of
wavelet coefficients to translation can present prob-
lems.5

Other investigators have considered filter-design
approaches, where the filters were designed for a par-
ticular texture-segmentation task. The use of filters
tailored to a specific task offers the potential of re-
ducing the segmentation error or reducing the num-
ber of filters. However, prior filter-design approaches
were typically limited to the design of one filter per
texture or one filter per texture pair.1,2 The cen-
ter frequency of each Gabor filter was set equal to
a peak frequency in the spectrum of the correspond-
ing texture, and the Gabor-filter bandwidth was set
in proportion to its center frequency. A similar ap-
proach was suggested by Tan.11 A second filter-
design approach developed by Dunn et al. employed
a detailed procedure for designing a single filter to
segment two textures.6,7 In this approach, mea-
sured output statistics and a Rician statistical model
were used to predict image-segmentation error and
establish the filter design. More recently, Teuner et
al.39 presented a method for selecting the best fil-
ters from a pyramidal Gabor wavelet decomposition.
Recently, Casasent et al. described approaches em-
ploying composite filters comprised of several Gabor
filters with filter parameters tailored to recognizing
targets in clutter.20,21,40 The work, however, focused
on target detection rather than texture segmentation,
employed initial filter parameters based on nominal
target characteristics, combined filters into a macro-
Gabor filter, used a fixed number of filters, and em-
ployed a neural network approach. Finally, Carevic
and Caelli41 described a multiple-filter design proce-
dure based on clustering in the frequency domain.
Although the method provided relatively free selec-
tion of filter parameters, the filter design was based
on clustering in the frequency spectrum rather than
a direct measure of predicted segmentation error.

These filter-design approaches have a variety of
limitations. Some approaches focused on the filter
response to one or two textures rather than the filter
response to all textures. Bovik et al. selected fil-
ters that responded principally to a single texture.1,2

Also, prior methods of the present authors were lim-
ited to the design of a single filter for segmenting a
bipartite image6,7,10 or, more recently, to the design
of a single filter to segment multiple textures.9 We
have previously considered Gabor prefilter design in

concert with a Gaussian postfilter,9 but the design
of a set of prefilters in concert with a set of postfil-
ters remains to be addressed. (Since our approach
incorporates Gaussian postfilters, as later described
in Fig. 1, we refer to the Gabor filters used in our ap-
proach as Gabor prefilters.) These earlier approaches
also focused on the scalar output of individual fil-
ters rather than the vector output of multiple filters.
In addition, wavelet-decompositions, as in Teuner et
al.,39 are often limited to octave-bandwidth filters
that may not necessarily be the best bandwidth for a
particular segmentation task. The multi-filter design
approach of Carevic and Caelli41 used initial cluster-
ing that relied on distinct spectral features, limited
radial bandwidths to one octave, merged frequency
regions under 100 pixels (effectively limiting band-
width), and incorporated other parameters restrict-
ing the number of frequency rings or affecting the
filter-design clustering results. Finally, the previous
methods do not provide a comprehensive mathemat-
ical framework that leads to a filter-design method
based directly on predicted segmentation error.

To address the design of a multichannel system
for texture segmentation, we present a new mathe-
matical framework for the problem. This framework
forms the basis for the design of multiple Gabor pre-
filters and multiple Gaussian postfilters for texture
segmentation. The framework provides mathemati-
cal relationships between the power spectrum of the
textures, the parameters of the Gabor prefilters, the
parameters of subsequent Gaussian postfilters, the
vector output statistics of multiple channels, and the
predicted image-segmentation error. It also provides
vector output statistics that can be used to design a
Bayesian classifier.

In Section 2, we define the problem under consider-
ation and introduce the multichannel system for seg-
menting multi-textured images. The mathematical
framework for the problem is then developed in Sec-
tion 3. This framework leads to efficient procedures
for designing the filters and other components of the
multichannel system. Section 4 presents experimen-
tal results supporting the efficacy of our approach.
These results demonstrate, for example, effective seg-
mentation of an eight-texture image using only two
filters. Thus, our methodology can lead to signifi-
cantly simpler systems than prior approaches.

2 Problem Statement

Fig. 1 illustrates the multichannel system that we
use for segmenting multi-textured images. In Fig. 1,
the input image is filtered through parallel channels.
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Each channel, j = 1, 2, . . . , k, consists of a Gabor
prefilter hj(x, y), magnitude operator | · |, and Gaus-
sian postfilter gpj (x, y). These combined channel out-
puts are classified by the vector classifier. The out-
put of the classifier is then passed through a post-
processing stage to form the final segmented image.
Although the development focuses on the case of mul-
tiple channels (k > 1), our methods can be applied
to the design of a single channel.

The N × N pixel input image is denoted I(x, y)
in the system of Fig. 1. The image is assumed
to be composed of N ≥ 2 different textures de-
noted t1, t2, . . . , tN . Representative samples of each
of the N textures are used to design the k chan-
nels, the classifier, and the postprocessing stage.
In principle, the system of Fig. 1 is is similar to
other recently proposed multichannel segmentation
approaches.2,3,5,33,42 But, in our work, the filter pa-
rameters, classifier, and postprocessing components
remain open for explicit design; i.e., the number of
channels, the Gabor prefilter parameters, the Gaus-
sian postfilter parameters, the classifier parameters,
and the postprocessing all remain to be specified.
Further, our approach considers the vector behavior
of all channels in addition to the behavior of individ-
ual channels.

We now give further details on the configuration of
the multichannel system in Fig. 1. In the jth channel,
the input image I(x, y) is first filtered with a band-
pass Gabor prefilter having a spatial impulse response
hj(x, y) given by

hj(x, y) = gj(x, y) e−j2π(ujx+vjy)

=
1

2πσ2
gj

e
− (x2+y2)

2σ2
gj e−j2π(ujx+vjy) , (1)

where gj(x, y) is a two-dimensional Gaussian and
(x, y) are spatial coordinates. The impulse response
hj(x, y) is a complex sinusoid with center frequency
(uj, vj) that is modulated by a Gaussian envelope.6

The scale, or size, of the envelope of hj(x, y) is de-
termined by σgj . For simplicity, a symmetric Gaus-
sian envelope gj(x, y) is used. The effect of an asym-
metric Gaussian envelope is given elsewhere,7 and
the present methods can accommodate asymmet-
ric gj(x, y) by replacing the symmetric form given
in (1).

Taking the Fourier transform of hj(x, y), the fre-
quency response of the jth Gabor prefilter is

Hj(u, v) = F{hj(x, y)} = Gj(u− uj, v − vj) , (2)

where F{·} is the Fourier transform operator, and
Gj(u, v) is the Fourier transform of the Gaus-
sian gj(x, y):

Gj(u, v) = F{gj(x, y)} = e
−2π2σ2

gj
(u2+v2)

. (3)

The output of the prefilter ihj (x, y) is then the con-
volution of the input image with the filter response,

ihj (x, y) = hj(x, y) ∗ I(x, y) , (4)

where ∗ denotes convolution in two dimensions. The
subscript “hj” in ihj (x, y) indicates the output of Ga-
bor prefilter hj(x, y) in the jth channel. The next
processing step in the jth channel is to compute the
magnitude of the output of the Gabor prefilter

mj(x, y) = |ihj (x, y)|. (5)

The statistics of mj(x, y) have been shown to be ap-
proximately Rician for bandpass-filtered textures and
are later used in estimating the statistics of the chan-
nel outputs.6,9,10 The final step in each channel is to
apply a lowpass Gaussian postfilter gpj(x, y) to the
prefilter output mj(x, y) yielding the postfiltered im-
age

mpj (x, y) = mj(x, y) ∗ gpj (x, y) , (6)

with

gpj(x, y) =
1

2πσ2
pj

e
− (x2+y2)

2σ2
pj , (7)

where the parameter σpj determines the Gaussian
postfilter in the jth channel.

The four parameters (uj , vj, σgj , σpj) completely
determine the Gabor prefilter and Gaussian postfil-
ter in the jth channel. The values of these four filter
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Figure 1: Multichannel system for texture segmentation. The number of channels is not predetermined, and
can be varied as part of the design process.

parameters are not only free to vary within a given
channel, but are free to vary from channel to channel.
The number of channels k in the system is also free
to vary and is not set a priori. Within each channel,
we refer to ihj (x, y) as the prefiltered image, mj(x, y)
as the prefilter output, and mpj (x, y) as the postfilter
output.

The outputs of the k channels form a k-dimensional
feature vector for each of the N2 pixels in the input
image I(x, y). The vector classifier then generates an
N × N classified image c(x, y) from the k postfilter
outputs. A Bayesian classifier, based on predicted
multivariate output statistics, is used. Finally, the
classifier output is postprocessed to improve perfor-
mance at boundaries between different textures. The
output of postprocessing is the final segmentedN×N
image is(x, y). N different gray-scale values are used
in the segmented image is(x, y) to represent the N
textures.

For the multichannel system of Fig. 1, the prob-
lem is to design a set of k channels and associ-
ated classifier that minimizes the predicted texture-
segmentation error, given representative samples of
N textures.

3 Mathematical Framework

Our approach to designing the system of Fig. 1 is
to develop a mathematical framework that is useful
both in describing system behavior and in design-
ing system components. The proposed framework
provides relationships between the parameters of the
k Gabor prefilters, the parameters of the k Gaus-

sian postfilters, the multivariate probability density
of the k-dimensional output vector, and the predicted
image-segmentation error. Section 3.1 first presents
relationships between the sample textures, filter pa-
rameters, and multivariate probability density of the
k filter outputs. The predicted multivariate proba-
bility density is then used to estimate segmentation
error in Section 3.2. Finally, the effects of errors in
the vicinity of texture boundaries are considered in
Section 3.3.

3.1 Statistical Model

We begin by presenting a statistical model for the vec-
tor output of the k channels. A prefiltered texture is
first modeled as a dominant sinusoid plus bandpass
noise. This bandpass model then leads to a Rician
distribution for the magnitude of the prefiltered tex-
ture. Next, a Gaussian distribution is used for the
postfilter outputs of individual channels. The Gaus-
sian statistics are derived from the foregoing Rician
statistics. Finally, a multivariate Gaussian distribu-
tion is proposed for the vector output of the k chan-
nels.

Previously, we had shown that the output of a
Gabor prefilter can be modeled as a dominant com-
plex exponential plus bandlimited noise.9,10 In this
work, the bandpass frequency spectrum of the Gabor-
filtered texture is decomposed into a dominant com-
plex sinusoidal component plus a remainder compo-
nent. Let Aij represent the amplitude of the domi-
nant spectral component at some frequency (uij , vij)
within the passband for channel j and texture ti, and
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let nij(x, y) represent the remaining portion of the
passband signal for channel j and texture ti. Then,
the output of the Gabor prefilter ihj (x, y) for texture
ti is denoted ihij (x, y) and can be approximated as

ihij (x, y) ≈ Aij e
j2π(uij x+vij y+θij) + nij(x, y) (8)

where θij accounts for variable phase shift in the com-
plex sinusoid and where (uij, vij) is the dominant fre-
quency within the passband of the Gabor prefilter
hj(x, y).

The envelope of a sinusoid plus bandpass white
Gaussian noise follows a Rician probability density
function.43–45 Similarly, the bandpass model in (8)
suggests a Rician distribution for mj(x, y), and we
have previously shown this to be the case.9,10 Al-
though it is apparent that the residual passband en-
ergy represented bynij(x, y) is not necessarily “noise-
like,” this model produces effective results in practice
while avoiding increased complexity.

Let mij(x, y) denote the prefilter output mj(x, y)
in channel j when the input texture is ti. Then, the
Rician probability density function pi(mj ; Aij, Nij)
describing the statistics of mij(x, y) is:9,10

pi(mj ; Aij, Nij) ≈
2mj

Nij
e
−(

m2
j
+A2

ij
Nij

)
I0(

2mjAij
Nij

)(9)

wheremj ∈ mij(x, y), and I0(·) is the modified Bessel
function of the first kind with zero order.6,43–45 A2

ij

represents the power of the dominant sinusoid, and
Nij represents the remaining power in the passband
modeled as noise. The overall approach is general
in that the bandpass image is modeled as a dominant
complex sinusoidal component with the difference be-
tween the filtered image and the sinusoid being at-
tributed to the noise term nij(x, y).

Given the Rician density function, we have also
shown previously that the parameters Aij and Nij
can be estimated from the power spectrum of the
sample textures ti.

9 A smoothed spectral estimate
Pi(u, v, σg) is used to find Aij and Nij. Let Si(u, v)
be the power spectrum of texture ti, and define
Pi(u, v, σg) as the frequency-domain convolution

Pi(u, v, σgj) = |Gj(u, v)|
2 ∗ Si(u, v) , (10)

where |Gj(u, v)| is the Gaussian kernel from (2) and
(3) describing the envelope of a Gabor prefilter for
some σgj . In practice, Pi(u, v, σgj) can be calculated
efficiently for all Gabor prefilter center frequencies
(u, v) simultaneously using the form

Pi(u, v, σgj) = F { (gj(x, y) ∗ gj(x, y)) Ri(x, y) }

(11)

where F {Ri(x, y)} = Si(u, v). A fast Fourier trans-
form (FFT) is used to implement a discrete form of
(11), giving Pi(u, v, σgj) at a discrete set of center
frequencies (u, v) for a particular σgj .

9 The Rician
parameters A2

ij and Nij for a particular filter center

frequency (uj, vj) are then given by9

A2
ij = A2

i (uj , vj, σgj) (12)

Nij = Ni(uj, vj, σgj) (13)

where

A2
i (u, v, σgj) ≈ Pi(u, v, σgj) −Ni(u, v, σgj) (14)

and

Ni(u, v, σgj) ≈
Pi(u, v, σgj)− Pi(u, v, σgβ)

[1− (
σgj
σgβ

)2]
. (15)

Further details on Eqs. (14) and (15) can be found in
Weldon and Higgins.9 In practice, A2

i (u, v, σgj) and
Ni(u, v, σgj) are computed for each σgj and each tex-
ture ti under consideration using (14) and (15). The
parameter σgβ is empirically chosen, with a typical
value of σgβ = 2σgj . In (12), Aij tends to be larger
in the vicinity of strong spectral peaks. In (13), the
term Nij tends to be larger in flat, or “noise-like,”
regions of the frequency spectrum. At all frequencies
(uj, vj), the sum of Nij and A2

ij is the total power of
the sinusoid plus noise.
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The means and variances of the prefilter outputs
are found next, since these are used to find the means
and variances of the postfilter outputs. The means
µgij and variances s2gij of the prefilter outputmj(x, y)
for each channel j and each texture ti follow from the
Rician density function:28,46

µgij =

∞∫
0

mj pi(mj ; Aij, Nij) dmj (16)

s2gij =

∞∫
0

(mj − µgij )
2 pi(mj ; Aij, Nij) dmj . (17)

where, in practice, µgij and s2gij are computed using
numerical approximations of (16) and (17) at each
discrete frequency (u, v), for each σgij and texture ti
under consideration. (For notational convenience in
(16) and (17), the argument (u, v, σgj) is omitted in
µgij and s2gij .)

The postfiltering generates a spatial average of the
Rician-distributed prefilter output. Previously, we
have shown that the statistics of the postfilter out-
puts mpij (x, y) are approximately Gaussian.9,10 The
means µpij and variances s2pij of the postfilter out-
puts mpij (x, y) are derived from the prefilter means
and variances and the parameters σgj and σpj :

µpij = µgij (18)

s2pij =
σ2
gj

σ2
pj

s2gij . (19)

where σ2
gj < σ2

pj .
The foregoing single-channel results must be ex-

tended to vector statistics for multiple channels.
Since the output statistics of a single channel are
Gaussian, we propose a multivariate Gaussian to de-
scribe the vector output statistics for k channels.
First, define a matrix Θk that determines the pa-
rameters for k channels:

Θk =


θ1
θ2
...
θk

 =


u1 v1 σg1 σp1
u2 v2 σg2 σp2
...

...
...

...
uk vk σgk σpk

 , (20)

where each row in Θk defines the parameters
(uj, vj, σgj , σpj) for a single channel. Then, the multi-
variate Gaussian density function describing the vec-
tor output mp when texture ti is filtered by a given
set of channels Θk is given by

pi(mp,Θk) = (21)

1

(2π)k/2|Ci |1/2
e−(

(mp−µi)TCi
−1

(mp−µi)
2 )

where

mp =


mp1

mp2
...

mpk

 , µi =


µpi1
µpi2

...
µpik

 , (22)

and

Ci = E
[
(mp − µi)(mp − µi)

T
]
. (23)

The vector mp is a sample of the k-dimensional
postfilter-output vector, mpj ∈ mpj (x, y) is a sam-
ple of the postfilter output in channel j for texture
ti, and µi is the mean of the output vector for tex-
ture ti. Ci is the k × k covariance matrix of the
postfilter outputs for texture ti, E[ · ] indicates ex-
pected value, and superscript T indicates transpose.
The argument Θk is included in (21) to indicate that
the output statistics depend on the filter parameters.
This reflects the dependence of the mean vector µi
and covariance matrix Ci on the filter parameters.

The components of the mean vector µi in
(22) are determined for each texture ti, i =
1, 2, . . . ,N , and each set of candidate filter parame-
ters (uj, vj, σgj , σpj) using (18). The covariance ma-
trix Ci in (23) presents greater difficulty, and can
not be practically computed for all filter combina-
tions because of the inordinate number of combina-
tions. However, the diagonal elements of the covari-
ance matrix are already available as s2pij from (19).

Thus, we propose using the values of s2pij along the
diagonal of Ci with all off-diagonal elements equal to
zero. This diagonal form is chosen for three reasons:
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(1) because the computation of the off-diagonal ele-
ments is not practically feasible, (2) the diagonal form
affords computational advantages in later stages of
the development, and (3) the propensity for strongly
correlated features (that would result in nonzero off-
diagonal elements in Ci) can be reduced by measures
described shortly. The diagonal form is then

Ci ≈


s2pi1 0 · · · 0

0 s2pi2
. . . 0

...
. . .

. . .
...

0 · · · · · · s2pik

 . (24)

The form of (24) implies that the features are un-
correlated, since off-diagonal elements are all zero. To
reduce the likelihood of strongly correlated features,
we require any pair of Gabor prefilters in Θk to be
separated in frequency by more than the sum of their
two bandwidths, as defined by |Gj(u− uj, v− vj)| =
e−1/2 in (2). The choice of e−1/2 in defining band-
width is somewhat empirical but has been found to
produce effective results. The mirror image of fil-
ters reflected across the u and v frequency axes are
also disqualified, since these filters have identical re-
sponses for real-valued I(x, y). In the following sec-
tion, the diagonal form for Ci also simplifies the
calculation of the determinant and inverse as later
needed in (25). Finally, our experimental results sup-
port the use of the diagonal form in (24), since both
the design of the filters in the system and the design
of the classifier are based on (24).

3.2 Segmentation Error Measure

The texture-segmentation error can now be estimated
from the multivariate Gaussian distribution (21). In
the following, an upper bound on classification er-
ror is used to obtain a measure of segmentation er-
ror, since a classifier is used in Fig. 1 to perform the
segmentation. A bound is obtained using the Bhat-
tacharyya distance. Then, a slight empirical modifi-
cation, based on our experiments, is proposed.

The Bhattacharyya distance B(tα, tβ,Θk), or B-
distance, between two texture classes, tα and tβ , for
a given set of filters Θk is

B(tα, tβ,Θk) =
1

8
(µα −µβ)T

[
Cα +Cβ

2

]−1

(µα −µβ)

+
1

2
ln

(∣∣ 1
2 (Cα +Cβ)

∣∣
|Cα|1/2|Cβ|1/2

)
(25)

where µα and µβ are the mean vectors, andCα and
Cβ are the covariance matrices associated with the
two textures.47 The B-distance can be used to find an
upper bound for the classification error withN multi-
variate Gaussian classes representing theN textures.
Let Ec(Θk) be the total classification error for all N
textures given filter parameters Θk. The error bound
for N textures is then48,49

Ec(Θk) <

N−1∑
α=1

N∑
β=α+1

(PαPβ)
1/2ραβ (26)

where Pi is the a priori probability of texture ti
occurring in the image, and the two-class Bhat-
tacharyya coefficients ραβ are

ραβ = e−B(tα,tβ,Θk) .

We indicate the error’s dependence on the filter pa-
rameters by including the argument Θk in (26).
Equations (25) and (26) provide the relationship be-
tween the image-segmentation error and the multi-
variate Gaussian statistics of the vector output of
the k channels. The predicted error is taken to be
the bound given in (26). In the absence of addi-
tional information, the a priori probabilities Pi, i =
1, 2, . . . ,N , are taken to be equal.

In practice, the error bound (26) is effective for
multichannel filter design when the number of tex-
tures is small (N < 4). We have observed that pre-
dicted segmentation error using (26) can greatly ex-
ceed 1 as the number of textures increases, and these
large predicted errors cause difficulty when design-
ing filters. The worst-case error in (26) occurs when
all textures are identically distributed; i.e., when
µα = µβ and Cα = Cβ, ∀ α, β. In this case,
ραβ = 1, ∀ α, β in (26); with equal a priori proba-
bilities (26) then becomes:

Ec(Θk) <
1

N

(
N

2

)
=
N − 1

2
. (27)
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Thus, the upper bound of the classification error
Ec(Θk) can greatly exceed one for large numbers of
textures. To prevent the error estimate from exceed-
ing 1 and to improve the error estimate performance
over a wider range of N , we have found the following
modification to (26) useful for estimating the classi-
fication error:

Ec(Θk) ≈
1

N − 1

N−1∑
α=1

N∑
β=α+1

(PαPβ)1/2ραβ (28)

where the worst-case upper bound on Ec(Θk) in (28)
becomes 1

2 . Alternatively, (28) could be scaled for a
worst-case upper bound of 1− 1

N .

3.3 Total Error Measure

Segmentation of textured images requires not only
the accurate classification of textures within regions,
but also the accurate localization of boundaries be-
tween regions. We refer to the former as classification
error, and the latter as localization error. Thus, to
form a total measure of image-segmentation error, we
augment the classification error Ec(Θk) with a local-
ization error term.

In considering localization error, it is useful to con-
sider two types of error that arise at texture bound-
aries: edge error and corner error. Edge error is
loosely defined as the error in determining the bound-
ary between two textures when the boundary is a
straight line and no corners or other discontinuities
occur in the boundary’s vicinity. Corner error is
loosely defined as the error in determining the bound-
ary between two textures in the vicinity of a right-
angle texture boundary. For the present discussion,
this “vicinity” roughly corresponds to the spatial ex-
tent of the filter-channel impulse response as defined
by parameters σgj and σpj .

In our approach, corner error is addressed by aug-
menting Ec(Θk) to account for localization error.
Edge error is addressed by slightly modifying the de-
cision surfaces of the classifier using a mixture den-
sity.

The corner error tends to increase as the spatial
resolution of the filters becomes coarse, since small
features such as sharp corners are blurred by the fil-
ter. Based on a simple estimate of error in such cor-
ners, we propose the following empirical measure of
this localization error El(Θk):

50

El(Θk) ≈
N

k

k∑
j=1

2(σ2
pj

+ σ2
gj

)

N2
, (29)

where the image dimensions areN×N , N is the num-
ber of textures, and the term (σ2

pj
+σ2

gj
) approximates

the effective spatial localization of the combined pre-
filter and postfilter in channel j. The summation over
k generates an average over the k channels. Although
the localization error measure El(Θk) is straightfor-
ward, we find it to produce effective filter designs in
our experiments.

The total error measure Et(Θk) for filter selection
is then the sum of the classification error Ec(Θk) and
the localization error El(Θk):

Et(Θk) = Ec(Θk) + El(Θk)

≈
1

N − 1

N−1∑
α=1

N∑
β=α+1

(PαPβ)
1/2 e−B(tα,tβ,Θk)

+
1

k

k∑
j=1

2(N )(σ2
gj

+ σ2
pj

)

N2
(30)

where σgj and σpj are defined by Θk in (20). In
(30), the first term represents error due to separa-
bility of classes in feature space, and tends to favor
filters with larger values of σg and σp. The second
term represents error due to localization, and tends
to favor filters with smaller values of σg and σp.

At several points in the development, we have em-
ployed relatively simple models to avoid increased
computation. Each of these models could be re-
placed by more sophisticated models at the expense
of greater complexity. However, our proposed models
mitigate the prohibitive number of filter combinations
that must be considered in the design of a multichan-
nel system. In particular, the filtered texture was
modeled as a dominant sinusoid plus noise, leading
to the Rician density function in (9) characterized by
only two parameters Aij andNij . Second, an efficient
estimate of Aij and Nij was implemented using the
FFT to compute Pi(u, v, σgj) for use in (14) and (15).
Next, a multivariate Gaussian model pi(mp,Θk) for
the statistics of the vector output led to the use of
the Bhattacharyya distance in estimating segmenta-
tion error. The diagonal covariance matrixCi simpli-
fies computation and does not require computing the
covariance of all filtered textures for all filter com-
binations. Finally, a simple empirical estimate of
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localization error El(Θk) is used to augment classi-
fication error Ec(Θk). Any added complexity in the
models would be compounded by the number of filter
combinations that must be considered when the fil-
ter design procedure is implemented. Further details
on the computational complexity of our approach are
found in Weldon and Higgins.9

3.4 Filter-Design Method

Combining the foregoing results, the procedure for
designing k channels comprised of k Gabor prefilters
and k Gaussian postfilters is given below.

1. Construct a collection Ψ of individual candidate
channels:

Ψ = { θ } = { (u, v, σg, σp) } (31)

such that:

σg ∈ Σ
σp ∈ {λσg | λ ∈ Λ}

(u, v) ∈

{ (
η1√
8π2σ2

g

, η2√
8π2σ2

g

)}
,

where

−0.5 ≤ u < 0.5 , 0 ≤ v < 0.5 ,
η1 ∈ {. . . ,−1, 0, 1, 2, . . .} , η2 ∈ {0, 1, 2, . . .} ,

Σ is a set of candidate prefilter σg’s, and Λ is
a set of constants determining candidate ratios
of the postfilter σp relative to each value of the
prefilter parameter σg. For each value of σg, an
overlapping tessellation of candidate Gabor pre-
filters is created in the frequency half-plane. Ψ
is a set of candidate filters from which the final
design is constructed and differs from filter-bank
approaches to texture segmentation where the
filter parameters are predetermined and subdi-
vide the frequency plane into non-overlapping
regions. The filters in Ψ overlap significantly
within the tesselation for each value of σg, and
filters within a tesselation for one value of σg can
completely overlap filters within a tesselation for
another value of σg. Thus, our approach permits

freedom in center-frequency selection due to the
overlapping tesselation and permits different fil-
ter bandwidths at a center frequency by includ-
ing separate tesselations at different values ofσg.
Finally, we note that candidate filters in Ψ are
not limited to octave scalings of σg.

The candidate prefilter center frequencies (u, v)
in (31) cover the closed right-half frequency

plane at integer multiples of 1/
√

8π2σ2
g , where

1/
√

8π2σ2
g is the displacement from center fre-

quency at which the Gabor prefilter frequency
response (2) equals e−1/4 = 0.78. This fre-
quency separation allows significant overlap be-
tween adjacent filters, without unduly increas-
ing the number of filters. Although filters
with overlapping responses are members of Ψ,
any combination of filters comprising Θk is not
permitted to have overlapping prefilters at the
e−1/2 frequency-response point. Overlapping re-
sponses are not permitted in an effort to re-
duce the likelihood of strongly correlated channel
outputs. In addition, center frequencies within

1/
√

8π2σ2
g of the origin (u, v) = (0, 0) are ex-

cluded to prevent inadvertent segmentation re-
sults from average-response differences.1,2,50

2. Compute A2
i (u, v, σg) and Ni(u, v, σg) for each

σg ∈ Σ and each texture ti using (14) and
(15). This is done for each sample texture ti
under consideration. Pi(u, v, σg) in (10) can be
computed efficiently using a Fast Fourier Trans-
form.9,50 The result of this step is the parame-
ters A2

i (u, v, σg) and Ni(u, v, σg) at each discrete
frequency (u, v) for each σg ∈ Σ and for each
texture ti, i = 1, 2, . . . ,N .

3. Find the best single filter-channel θ1 ∈ Ψ as de-
fined by

Et(θ1) ≤ Et(θξ) , ∀ θξ ∈ Ψ (32)

where θ1 ∈ Ψ. The predicted segmentation er-
ror associated with each filter is computed using
(30). The components of µi and Ci are com-
puted fromA2

i (u, v, σg) andNi(u, v, σg) using us-
ing (18) and (19) for each set of filter parameters
θ ∈ Ψ. Off-diagonal elements ofCi are set equal
to zero. For this step, (30) takes a scalar form for
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a single channel; i.e., the multivariate Gaussian
in (21) becomes univariate.

4. Search for subsequent filters using a forward se-
quential selection method,49

Θδ =

[
Θδ−1

θδ

]
(33)

such that

Et

([
Θδ−1

θδ

])
≤ Et

([
Θδ−1

θξ

])
, ∀ θξ ∈ Ψ

where row vector θδ ∈ Ψ, and where Θδ−1 is
a fixed δ − 1 row by 4 column matrix, hav-
ing been established at step δ − 1 of the proce-
dure. The forward-sequential method terminates
when a desired error level Et(Θδ) is achieved or
when a desired number of channels k is reached.
The final filter design is then denoted Θk. Al-
though a single channel θδ is added at each step
in (33), the criteria for selecting the added chan-
nel is based on the combined effect of all δ chan-
nels through the vector error measure Et(Θδ).
Thus, the vector output statistics of all δ chan-
nels are considered as each new channel is added.
The final filter design is then Θk. Alternatively,
the procedure can terminate when the predicted
segmentation error Et(Θδ) reaches some desired
level.

4 Results

Before proceeding to the experimental results, we
briefly outline the methods used to design the over-
all texture-segmentation system in Fig. 1. First, the
total segmentation-error measure Et(Θk) in (30) is
used as the criterion for the design of the channels.
Given a set of texture samples, the filter parame-
ters are chosen to minimize total segmentation error
Et(Θk) using the filter design procedure outlined in
Section 3.4. Second, the predicted multivariate Gaus-
sian probability density pi(mp,Θk) of (21) is used
to construct a Bayesian classifier for the vector clas-
sifier in Fig. 1. Predicted statistics are used rather
than directly-measured statistics to confirm the ef-
fectiveness of the predicted statistics in (21). Finally,

postprocessing is used to remove narrow misclassified
regions at texture boundaries.

We have tested our texture-segmentation method
on a wide range of synthetic and Brodatz textures.51

In Fig. 2, we show results for a 256× 256 pixel 8-bit
gray-scale image comprised of 8 textures. To pre-
vent biased segmentation results due to leakage of
the DC component through the Gabor prefilters, the
average gray-scale of all textures were equalized.1,2,50

The input image of Fig. 2(a) contains eight Bro-
datz textures, counterclockwise from the upper left:
d77 “cotton canvas,” d84 “raffia,” d55 “straw mat-
ting,” d17 “herringbone weave,” d68 “wood grain,”
d57 “handmade paper,” d21 “French canvas,” d24
“pressed leather”.51 The parameters Σ = {2, 3, 4.5}
and Λ = {1.5} were used to construct the collec-
tion of candidate filters Ψ. The segmented images
in Figs. 2(b), (c), and (d) show progressive improve-
ment as the number of channels increases from 2, to
4, to 6. Even with two filters, we find that our ap-
proach can generate an effective design for segment-
ing an eight-texture image. Although such effective
results are not always achievable with so few filters
and so many textures, they do illustrate the potential
of our methods.

Fig. 2(e) is a plot of the predicted single-channel
error as a function of frequency. The gray level in
this plot is proportional to segmentation error, with
black representing zero error and white representing
100 % error. The center of Fig. 2(e) corresponds to a
prefilter center frequency (u, v) = (0, 0). The u axis
ranges from -.5 at the top to +.5 at the bottom, and
the v axis ranges from -.5 at the left to +.5 cycles-per-
pixel at the right of the image. The locations of the
center frequencies of the 6 filters used in the segmen-
tation of Fig. 2(d) are shown as white squares super-
imposed on Fig. 2(e). The center frequencies of the
six filters in Fig. 2(e) tend to fall within darker regions
corresponding to lower predicted error for a single fil-
ter. It is unlikely that any single filter could segment
all eight textures with little error, and this is mani-
fested in Fig. 2(e) by the absence of any dark black
regions that would suggest a very low predicted seg-
mentation error for a single filter. Finally, in Fig. 2(f)
the misclassified pixels from the 6-channel segmenta-
tion of Fig. 2(d) are shown in black.

As another example, the image shown in Fig. 3(a)
is composed of five samples from the Brodatz tex-
ture album and resembles the “Nat-5” image used by
previous investigators to test texture-segmentation
methods.3,42,51 The parameters Σ = {3, 6, 12} and
Λ = {1.5, 2} were used to construct the collection of
candidate filters Ψ. For this example, there are ap-
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proximately 7000 different prefilters in Ψ, each with
two possible postfilters, resulting in approximately
14,000 candidate filter channels. There are then ap-
proximately (14, 000)4 ≈ 4 × 1016 combinations of 4
filters. Fig. 3(b) is the result of a k = 2 channel
segmentation, (c) is the result of a k = 4 channel
segmentation. The measured segmentation error de-
creases from 0.13 to 0.05 as the number of channels
increases. By comparison, Jain and Farrokhnia ob-
tained similar segmentation results using 13 filters se-
lected from a predetermined filter bank of 20 filters.3

Randen and Husøy also achieved similar results using
13 to 40 filters.42

5 Discussion

We have presented a mathematical framework for the
design of multiple Gabor filters to segment multi-
ple textures. The framework provides relationships
between predicted segmentation error Et(Θk), Ga-
bor prefilter parameters (u, v, σgj), Gaussian postfil-
ter parameters σpj , and sample-texture power spectra
Si(u, v). In addition, the framework gives predicted
multivariate output statistics pi(mp,Θk) for multiple
channels.

A multi-channel filter design procedure was devel-
oped using the mathematical framework. The experi-
mental results support the framework, since both the
designed filters and the Bayesian classifier used in the
segmentations were based on it. The results showed
effective segmentation of 8 textures in a single image
using 2-6 channels. Compared to earlier efforts, the
results suggest that our methods can generate effec-
tive segmentations using fewer filters.

In our framework, the bandpass-filtered texture
was modeled as a dominant sinusoid with remain-
ing energy allocated to noise. Although imperfect,
this model has been found to be remarkably effec-
tive in our experiments. The generality of this no-
tion also suggests that our methods should be ap-
plicable to other types of bandpass filters. Such an
adaptation can be accomplished by replacing the ker-
nel Gj(u, v) in (10) by a different kernel K(u, v).
(K(u, v) could also accommodate asymmetric filter
variants.) For a direct substitution, K(u, v) should
satisfy [K(u, v)]2 = |K(u, v)|2, and K(u, v) should
be non-negative to assure that the spectral estimate
given by (10) is non-negative.

Since our classifier is designed using the sample tex-
tures, it will assign all regions of the textured image
to one of the original texture classes. Thus, a tex-
ture different from the original textures used in the
design of the system will be assigned to one of the

original textures. However, the absence of a texture
from the image will not present difficulties since the
feature vector at the filter-bank output should not be
found in regions of feature space assigned to this tex-
ture class. In our experimental results, the successful
segmentation of the large homogeneously textured re-
gions is representative of this second situation.

The multiple filter design problem is deceptively
complex. To illustrate this, consider the problem of
designing k filters to segment an N × N pixel im-
age. If there are N2/2 candidate-filter center fre-
quencies, (log2N)/2 filter bandwidths, and a set of
only k = 4 channels, then there are approximately
[(N2 log2N)/4]k possible filter-channel combinations,
or 3 × 1020 combinations for N = 256. Therefore,
a brute-force approach without judicious selection
of candidate filters and careful attention to com-
putational efficiencies quickly becomes prohibitive.
Similarly, methods requiring explicit filtering of tex-
tures or multivariate statistical characterization of
the outputs would only exacerbate the problem. For
N textures and (log2N)/2 filter bandwidths, the
computational complexity of our method is roughly
3N [(log2N)/2](N2log2N) = 1.5N (Nlog2N)2, due
primarily to three N ×N FFT’s used in the compu-
tation of the mean and covariance statistics for each
texture and each bandwidth.9 This gives a complex-
ity of ≈ 3 × 107 for N = 5 textures and 256× 256
pixel images.

Finally, the images and a demonstration software
package called “teXan” are available.52 The pack-
age is a graphic-interface-based program for interac-
tive texture segmentation. Given an image, the user
marks samples of the different textures to be seg-
mented. The program then uses these samples to de-
sign the filters, design the classifier, and segment the
image automatically using the techniques presented
in this paper.
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