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Gabor filter design for multiple texture

segmentation
Thomas P. Weldon , William E. Higgins{, Dennis F. Dunntf

Abstract— A method is presented for the design of a sin-
gle Gabor filter for the segmentation of multi-textured im-
ages. Earlier methods were limited to filters designed for
one or two textures or were limited to filters selected from
a predetermined filter bank. Our proposed method yields
new insight into the design of Gabor filters for segmenting
multi-textured images and lays an essential foundation for
the design of multiple Gabor filters. In the method, Rician
statistics of filtered textures at two different Gabor-filter
envelope scales are used to efficiently generate probability
density estimates for each filtered texture over an extensive
set of candidate filter parameters. Variable degrees of post-
filtering and the accompanying effect on postfilter output
statistics are also included in the design procedure. The
result is a unified framework that analytically relates the
texture power spectra, Gabor-filter parameters, postfilter-
ing effects, and image-segmentation error. Finally, the re-
sulting filter design is based on all constituent textures and

is not constrained to a limited set of candidate filters.
Keywords— Subject terms: Gabor filters, texture segmen-

tation, statistical image analysis, texture analysis, computer
vision, image segmentation

I. INTRODUCTION

Gabor filters have been used in many applications, such
as texture segmentation [1]-[10], target detection [11],
[12], fractal dimension measurement [13], document anal-
ysis [14], edge detection [15], retina identification [16], im-
age coding [17], [18], and image representation [19]. Fur-
ther, Gabor filters have been shown to possess optimal filter
properties and to have similarities to biological vision sys-
tems [20]. Despite considerable research activity, the design
of single or multiple Gabor filters to segment multiple tex-
tures remains an open issue. In the following, we present a
method to address the single-filter multi-texture Gabor fil-
ter design problem. This development lays the groundwork
for ongoing development of a multi-texture multi-filter de-
sign method [9]. A comprehensive general overview of Ga-
bor filters is provided in the references [2], [5].

A basic Gabor filter channel typically uses a Gabor pre-
filter and a Gaussian postfilter, [21] as illustrated in Fig. 1
and discussed in Section 2. A fundamental issue confronted
by the aforementioned efforts [1]-[8], [11]-[19], [22] is how
the Gabor prefilters and Gaussian postfilters are to be de-
signed and selected. Two main methods have been pro-
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posed previously for selecting Gabor prefilters for texture
segmentation: the filter-bank approach and the filter-design
approach.

Many filter-bank approaches have been proposed. Daug-
man considered a filter-bank wavelet decomposition based
on biological vision [17]. A subset of a similar filter
bank was proposed by Jain and Farrokhnia [3]. Other
filter banks were proposed by Turner [23], Randen and
Husgy [24], Malik and Perona [25], Bigin and du Buf [6],
[26], and Chang and Kuo [27]. One difficulty with this
approach is that the filter parameters are preset ad hoc
and are not necessarily optimal for a particular process-
ing task. In addition, some segmentation tasks may not
require a large bank of filters for effective performance or
may not tolerate the large computational burden imposed
by a large filter bank. A final difficulty is that a large bank
of filters produces an output feature-vector with a large
number of dimensions. While efforts have been made to re-
duce this dimensionality [3], [6], potential difficulties with
a complicated classifier and the “curse of dimensionality”
remain [28].

The filter-design approach focuses on designing one or
a few filters for a particular application in an effort to re-
duce the difficulties of filter-bank approaches [1], [2], [5],
[7], [8], [21]. Several filter-design approaches have been
proposed previously. In the first approach, Bovik et al.
presented a design approach that used one Gabor filter
per texture [1], [2]. The center frequency of each prefilter
was selected to correspond to a peak in the texture power
spectrum, and prefilter bandwidths were determined by
the center frequency. Tan proposed a similar filter-design
scheme where a spectral peak determined the filter center
frequency [10]. In another approach, Dunn et al. provided
a detailed treatment of the optimal design of a single Gabor
prefilter for segmenting two textures [5], [7]. The method
involved an exhaustive search to find the prefilter center
frequency, using measured output statistics and a Rician
statistical model. Using measured Rician statistics, the
image-segmentation error was estimated and the prefilter
with the lowest error was selected. In the final approach,
Weldon et al. developed a more computationally efficient
filter-design technique based on the average energies of the
prefiltered textures [8], [21].

Limitations remain, however, in the filter-design ap-
proaches above. First, the methods of Bovik et al. do not
attempt to maximize the use of a single prefilter; i.e., these
methods give a filter that discriminates a single texture
rather than several textures [1], [2]. Second, prior methods
of the present authors are limited to the design of a single
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Fig. 1. Image processing diagram.

prefilter for segmenting a bipartite (two-texture) image [5],
[7], [8]. Third, an explicit methodology has not been been
suggested for selecting an appropriate Gaussian postfilter
in concert with an effective Gabor prefilter. Finally, the
previous methods do not strictly provide a complete uni-
fied mathematical framework for estimating all necessary
parameters.

We present a novel approach for designing a single Gabor
filter to segment multiple textures (> 2) in images. The
approach results in a precise, unified, and computation-
ally efficient method for determining Gabor prefilter and
Gaussian postfilter parameters. Since the resulting Gabor
prefilter can be used to segment more than two textures,
we also propose a more general segmentation scheme. The
overall result is a new mathematical framework that re-
lates the texture power spectra, Gabor-prefilter parame-
ters, nonlinear processing, Gaussian postfiltering, output
statistics, and image-segmentation error. This framework
provides an important bridge to the more general multi-
filter, multi-texture segmentation problem, as discussed in
related ongoing research [9], [29], [30].

The remainder of this paper proceeds as follows. Sec-
tion 2 first reviews the image-processing scenario. In Sec-
tion 3, we present the new Gabor-filter design technique.
Section 4 presents results demonstrating the efficacy of the
proposed methods.

II. PROBLEM OVERVIEW

Before proceeding, we briefly outline the steps in pro-
cessing an image. These processing steps are outlined in
the diagram of Fig. 1. More detail can be found in the
references [2], [21].

The input image i(z, y) is assumed to be composed of dis-
joint regions of A different textures t;(x,y),i = 1,..., N.
First, the input i(x,y) is filtered using a bandpass Gabor
prefilter having an impulse response h(z,y):

hz,y) = gla,y) e 2 WetVy)
1 _ (=%+4?) S (UntVy)
_ 202 —727(Ux+Vy 1
27rcr§ © (1)
with 2-D Fourier transform
H(u,v) = Gu-Unv-YV)
_ 6—277203((u—U)2+(v—V)2) , (2)

where G(u,v) is the Fourier transform of the Gaus-
sian g(z,y). In (1) and (2), parameters (U, V, 0,4) determine
the Gabor prefilter. The parameters (U, V') are referred to
as the prefilter center frequency, and parameter o, deter-
mines the prefilter bandwidth. For simplicity, the Gaussian
envelope g(z,y) is taken to be a symmetric function [21].

Continuing with Fig. 1, the output of the prefilter i, (z, y)
is
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where * denotes convolution in two dimensions. The mag-
nitude of the generally complex-valued first-stage output is
computed in the second stage as

m(z,y) = lin(z,y)| = | h(z,y) = i(z,y) |, (4)
where m(x,y) is shown in Section 3.1 to have approxi-
mately Rician statistics within the extent of each texture.
A Gaussian postfilter g,(z, y) is applied to smooth the pre-
filter output m(z,y) yielding the postfiltered image

m(z,y) * gp(,y)
_ (=2442)

Fa’% € 2012’ . (5)

The subscript p on o, denotes the postfilter parameter in
(5), while the subscript g on o, was used previously to
denote the Gabor prefilter parameter in (1).

We refer to ip(x,y) as the prefiltered image, m(z,y) as
the prefilter output, and my(x,y) as the postfilter output.
The postfiltering in (5) has been used by previous investiga-
tors to smooth out variations in m(x, y) due to fluctuations
in the underlying texture or noise in the image [1], [5], [7].
Thus, my(z,y) has a smaller variance than m(z,y), and,
therefore, results in better discrimination between different
textures [8], [31].

As a final processing step, the segmented image is(z,y)
is generated by applying several optimal thresholds to the
postfiltered image mp(z,y). More elaborate methods can
be used to generate the segmented image from the postfil-
tered image, but a simple threshold scheme more directly
illustrates the effectiveness of the new methods.

Given the system of Fig. 1, the goal is to design the Gabor
prefilter h(z,y) and Gaussian postfilter g,(z,y) such that
the resulting total segmentation error for all texture classes
in mp(z,y) is minimized.

mp(wa y)

m(z,y) *

III. FIiLTER DESIGN METHOD

This section presents a filter-design method that ad-
dresses the general design goal stated above. Before pro-
ceeding, we present a statistical development that leads to
the proposed method. To this end, we first discuss a model
for a prefiltered texture and an associated local spectral
model for an unfiltered input texture (Section 3.1). Using
these models and two different Gabor-filter envelope scales,
we derive a relationship between the texture power spec-
trum and the parameters that characterize the Rician pdf
of the prefilter output (Section 3.2). The predicted Rician
statistics of the prefilter output are then used to predict
the Gaussian postfilter output statistics (Section 3.3). Fi-
nally, optimal segmentation thresholds and the associated
segmentation error are calculated for the postfiltered out-
put (Section 3.4). The filter design is then established by
selecting the filter associated with the minimum predicted
error, as described in Section 3.5. Section 3.6 discusses
computational issues.
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A. The Rician Model

In this section, the statistical models of the Gabor pre-
filtered textures are developed. The following development
tends to focus on a single constituent texture ¢; but gener-
ally applies to all A/ constituent textures in the image.

We first extend recent results by Dunn and Higgins
that have shown the prefilter output to be character-
ized well by a Rician distribution [7]. We retain the 1-
dimensional notation of Dunn and Higgins for simplic-
ity, and represent the Gabor prefiltered output ix(z,y) as
in(z). The l-dimensional results are then generalized to
the 2-dimensional case. A Gabor prefiltered texture with
random perturbations is modeled by [7], [8], [32]

[(Ag cos(8) + X (z))

+j(Ao sin(0) + Y ()] *7U, - (6)
where the sinusoidal component of the Gabor prefiltered
image has magnitude Ay and frequency U. This sinusoidal
component is due to the unperturbed texture. The inde-
pendent, zero-mean, Gaussian lowpass random processes
X(z) and Y (z) are due to the perturbations in the tex-
ture. Eq. (6) can also be written as

’Lh(fﬂ) =

— AO e(j27ar+9)

+H(X(2) +5Y () 702 (7)
In two dimensions, the model for the Gabor prefiltered im-
age becomes

’Lh(fﬂ)

ihi(IE,y) ~ Si($ay) +nl($ay)
= AT ) (Y
where iy, (x,y) represents the image prefiltered by h(x,y)
for input texture t;(z,y), and (u;, v;) is the frequency of the
sinusoidal component of the prefiltered image. From (8),
the Gabor prefiltered image is then comprised of a com-
plex exponential s;(z,y) = A; e/27(% #+vi¥) "and bandpass
noise n;(z,y). The phase term 6 is dropped in (8) since the
locations of different textures in the input image are usually
unknown, and our methods do not use phase information.
Finally, Eq. (8) applies to each texture t;, so there are N
prefiltered textures iy, (x,y) corresponding to the responses
of a single filter h(x,y) to each of the N textures.
The magnitude of the complex signal iy, (2, y) was shown
to have a Rician distribution p;(m) when n;(z,y) is Gaus-
sian bandlimited noise; i.e.,

2m (Al

pilm) = 5 e T (T (9)

where A; is the amplitude of the complex exponential in
(8), N; is the total noise power, m € m;(z,y), and Io(-)
is the modified Bessel function of the first kind with zero
order [7], [33]-[35]. The Rician distribution is completely
determined by the values of A; and N;. For A? << N,
the Rician model in (9) also accommodates situations in
which the output statistics follow a Rayleigh distribution.
The ability to accommodate a Rayleigh distribution is im-
portant, since the filtered textures, in practice, commonly
have a Rayleigh distribution. One likely reason for this is

that it is unlikely that all textures will have a dominant
sinusoid, or equivalently large A;, at the center frequency
of a single filter.

Given the filtered-texture model in (8), we next consider
the local frequency spectrum at the input of the Gabor pre-
filter. The bandpass Gabor prefilter h(x,y) passes spatial
frequencies localized around the center frequency U, V)
and rejects energy at other frequencies. Thus, a locally
equivalent spatial-frequency model at the input of the pre-
filter is a complex exponential plus white noise, with power
spectral density S;(u,v):

Si(u,v) =~ A26(u — ui, v — v;) + % (10)
where (u;,v;) and A; are the frequency and amplitude of
the dominant sinusoid within the passband of the Gabor
prefilter with parameters (U, V, 04). The impulse §(-) in the
power spectrum models the dominant sinusoid within the
filter passband, and the remaining power in the passband
is allocated to 7;/4. In essence, we consider ip, (z,y) from
(8) to be the prefiltered version of the power spectrum of a
correlation-ergodic process in (10) [36]. The model (10), is
only valid within the approximate passband of the prefilter;
i.e., it is a local spatial-frequency model for an input texture
t;(x,y). We emphasize that (10) represents the input to the
filter, and thus the noise noise term %+ is bandlimited at
the output of the filter.

B. Estimation of Rician Parameters

We proceed to develop an estimate of the Rician parame-
ters A; and N; in (9) for texture ¢; as a function of the Ga-
bor prefilter parameters (U, V,o4) and the texture power
spectrum S;(u,v). We begin by observing that A2 + N;
equals the total power at the output of the Gabor prefilter.
Hence, we consider a measure of the Gabor-prefilter out-
put power for determining A; and N;. We then need to
solve for two Rician parameters, A; and N;. So, we use
the Gabor prefilter output power at two envelope scales to
solve for A; and N;. Finally, we use an FFT to efficiently
generate estimates of these parameters at all discrete FFT
frequencies.

When texture ¢;(x,y) is filtered by a Gabor prefilter
h(z,y) with fixed parameters (U,V,0y), the prefilter out-
put power P;(U,V, 0y), using (2), is

Pl(U7 V,O'g) =

_f _f Si(u,v) |G(u—U,v —V)|? dudv . (11)

As shown in the Appendix, P;(U,V,0,4) can be calculated
efficiently for all Gabor prefilter center frequencies (U, V)
simultaneously using the form

Pi(u,v,09) = F{gz,y)* g(z,y) Ri(z,y) }
= |G(w,v)]** Si(u,v) (12)
where F {} denotes the Fourier transform. A fast Fourier
transform (FFT) is used to implement the convolution.
The FFT implementation then gives P;(u,v,0,) at a dis-
crete set of center frequencies (u, v) for a particular og.



Given (10) and (12), the Rician parameters A; and N;
may be estimated from P;(u, v, 04). When the input spec-
tral model (10) is substituted into (12), we obtain the fol-
lowing measure of prefilter output power as a function of
prefilter center frequency:

Pi(uavva'g) ~ |G(u,v)|2* Si(uav)

202 [(u—us)*+(w—v)?]

~ Ai2 6—471' Og Ul

1671'03 . (13)
The first term above arises from the dominant sinusoid in
the passband represented by the impulse in (10). The sec-
ond term represents the remaining power in the prefiltered
image in, (¢,y) and gives the parameter N; = 7;/(1670?)
in the Rician pdf p;(m) in (9) [8], [31].

If we next consider P;(u,v,04) at two prefilter envelope
scales set by 04, and 043, we may solve for A; and N; at
the frequency (u;,v;) of the dominant sinusoid:

i

A?
it 16702,

Pi(ui; Vi, Uga)

A (ui, vs, 0ga) + Ni(ui, vi,040)

P;(u;, v; ~ A2 i
(uis viy 0gp) N P
9B
= A?(uhvha‘qa) + Ni(ui,w,am)(gﬂ)Q )
098
(14)
Rearranging (14) gives
AF (uiy viy 0 ga) = Pi(ui, vi, 0ga) — Ni(ui, v3,040).  (15)
and
Bi(Ui, Vi 0ga) — Fi(ti, i,
Ni(ut, vy, 7ya) = D02 002000) — Pl 00:003) 4
- (Z=y

As the prefilter center frequency diverges from (u;, v;), the
exponential term in (13) becomes less than 1, and an er-
ror term is introduced in (14-15), particularly for n; = 0.
(Note that for A; = 0, this error does not arise.) Exami-
nation of (13), (15), and (16) for n; = 0 shows that as the
exponential term in (13) becomes less than 1, power is in-
creasingly attributed to IV;, when in fact IV; should equal 0.
The net effect of this error, fortunately, is not detrimental
in the overall algorithm. The error induces a preference for
the frequency (u;,v;) of the local dominant sinusoid, since
lower N; implies lower variance in my(z,y). Also, the er-
ror is bounded by the following constraint that relates the
prefiltered image power and the Rician parameters:

Pi(u,v,040) = AZ(u,v,040) + Ni(u,v,040). (17)

Hence, the following equations are used to estimate A;

and N; for all candidate Gabor prefilter center frequencies
(u,v):

A?(’UJ,’U,O'ga) ~ Pi(’UJ,’U,O'ga) - Ni(uav709@)9 (18)
. (1,0, 730) — Pi(,v, 740)
Pi(u,v,04q) — Pi(u,v,0
N; (1,0, 0g0) & [19_ ) 98 (19)
Tgp8

where we reserve the upper case {U,V) for the constant
parameters of the final designed filter and use lower case
(u,v) to indicate function variables in (18) and (19).
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C. Postfiltering

The two preceding subsections established for each tex-
ture t; the relationship between the Gabor prefilter param-
eters (u,v,0y,), the texture power spectra S;(u,v), and the
pdf of the prefilter output m;(x,y). The next two subsec-
tions consider postfiltering, thresholding, and segmentation
error. We first use the prefilter output statistics to estimate
the postfilter output statistics. Then, we compute optimal
thresholds and the associated segmentation error, using the
predicted postfilter output statistics. Finally, the prefilter
and postfilter parameters associated with the minimum er-
ror are selected.

First, the postfilter output statistics are established.
Since A; and N; determine the Rician pdf, the means pg, ()
and variances s7, (-) of the prefilter output m;(x,y) may be
calculated directly for each sample texture t;(x,y). This
is done for each of the A/ sample textures as a function of
(u,v,040) using AZ(u,v,044) from (18) and N;(u,v,044)
from (19):

Hg; (ua v, Ugoé) =

m2 442 (u,v,0ga)

N ) 7 (2mA )
2m N; (w,0,0ga) mA; (U,V,0g9a
g‘mNi(u,U,Uga) € . IO( N;(u,v,04a) )dm
(20)
2 _
52, (U, 0,040) =
m24+A%(u,v,09a)

T(m_y‘gi(uvv7o—gcx))2 2m e—(W) T (2mAi(u,v,aga))dm
0 Ni(u,v,0ga) 0 N;(u,v,0ga) ’

The means i, (-) and variances s () of the postfilter
output my, (z,y) are derived from the prefilter means and
variances using the parameters o4 and o,. From (5), the
postfiltering produces a spatial averaging of m;(z,y). The
means /iy, (-) and variances s, (-) of the postfiltered outputs

are then approximated as:

Hg; (ua v, U'ga)

2 2
$2 (u,v,040) O
g’( = 25;&) gz . aga < 02(21)

Hp; (u, v, Uga)

~
~

sﬁi (¥, v, 0ga,0p) 5

P
For small ratios of o7, /02, the postfiltered output pdf will
become approximately Gaussian, per the central limit the-
orem. In addition, the Rician distribution itself approaches
a Gaussian distribution for A? >> N;. Therefore, the pdf
pi(-,mp) of the postfilter output my, (z, y) is approximated
for texture t; as

pi(ua v, UgDu O';Dy mp) ~
_ (mp—np; (w,09a))°
1 ¢ 2%, vogaop)
\/271'51271_ (u,v,09a,0p)
where m, € my, (z, y).

The effect of postfiltering is particularly pronounced
when the prefilter output is Rayleigh distributed; i.e., the
Rician distribution approaches a Rayleigh distribution for
A? << N;. In our experience, the Rayleigh case is com-
mon in filtered textures. The longer tails on the Rayleigh
distribution, relative to a Rician, lead to larger image-
segmentation errors when postfiltering is not employed.

(22)
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The inclusion of postfiltering in the proposed method en-
ables a balanced treatment of Rician and Rayleigh dis-
tributed prefilter outputs. It also offers a new perspective
on the need for postfiltering.

D. Segmentation

Having established the postfilter output pdf’s, a series
of optimal segmentation thresholds are calculated based
on equal a priori probabilities for the textures and the re-
sulting Gaussian pdf’s at the postfilter output. Bayesian
thresholds are selected that minimize the total segmenta-
tion error. These thresholds are set so that m,(z,y) is
assigned to the texture whose probability density is largest
for a given output level. This approach to texture seg-
mentation can be viewed as a local classifier [32]. With
equal a priori probabilities for the N textures, the mini-
mum segmentation error rate is achieved by deciding tex-
ture ¢; when [28]:

Di (u, U, 0gayOp, mp) > Dy (u, U, 0gayOp, mp) ;
JAi 1<i, <N (23)
where the estimated Gaussian pdf p;(-,m,) of the postfil-
tered output my, (z,y) for texture ¢;(z,y) is:

Di (ua v, UgDu O';Dy mp) =
_ mp iy, (uw,oga))?
2s UV, 0 g, T
\/275% (ul,v,o'ga,a-p) e by geTp) (24)
Equation (24) is implemented by first solving for the
points at which p;(-,mp) = p;(-,mp) for j # ¢. Since the
postfiltered outputs are assumed to have Gaussian pdf’s,
the two roots are found by solving a simple quadratic equa-
tion. The thresholds occur at the points at which the pdf’s
are equal:

1 _(mpfﬂpz-('))2 1 _(mp*“pz~(‘))2
e 23,00 e 253.() (25)
2mst, () 2ms3, ()

taking the logarithm of both sides and rearranging:

(mp = 1y, ())* (mp — (1)) _ (Sm(‘)> . (26)

252 () 252 ()

Sp; ()

This quadratic in m, is solved for the two thresh-
olds [37]. Each pair of pdf’s, corresponding to a pair of
textures, results in two roots. The A2 — N thresholds
7,q = 1,...,N? — N associated with (26) are then re-
ordered such that 71 < 79 < ... < Ta2_pr. Fig. 2 illustrates
the case of six thresholds associated with three Gaussian
pdf’s (i.e., three input textures). Values of my(z,y) in the
interval [7,,T,+1) are assigned to texture ¢, if:

pE(ua U, 0gas Opy mp(wa y)) > pg(ua UV, 0ga; Op, mp(wa y))
for all ¢ #¢e (27)
for any fixed combination of (u, v, 0 gq, 0p).
Note that m, > 0 and we may further restrict the
thresholds to include only 7 > 0, thus eliminating nega-
tive thresholds which may be induced by negative values

20 40 60 80
71 2 T3 T4 Ts 76

Fig. 2. Three Gaussian pdf’s with 6 associated thresholds. Each pdf
represents the postfiltered output statistics for a different texture.

of the Gaussian pdf. The set of thresholds is also extended
as required to include the intervals [0,71) and [7,2_,, 00).
Using these thresholds, the segmentation errores(+) is given
as:

Tr41

1
es(ua U, Oga; Up) ~1- JT[ Z / pE(u’ U, Ogas Op mp)dmp
T
Tr

(28)
for any fixed combination of (u,v,0ga,0p) and where p.(-)
is the pdf associated with texture ¢, assigned to the interval
[Tr» Tr+1)'

E. Filter Design

The resulting estimate of segmentation error in (28) is
used as the basis for the design of the system in Fig. 1.
The best filter design for any fixed (0¢q,0p) minimizes the
predicted error in (28) as a function of Gabor-filter center
frequency (u,v):

@v) = arg{ (" el vv7pm 0}
for any (0ga,0p). (29)

For guidelines on selecting values for o4, see Dunn et
al. [5]. The value of o, is in most cases larger than ogq,
but not so large that the desired resolution of the segmen-
tation becomes unacceptable. A range of parameter values
are used later in the experimental results to illustrate the
performance of the algorithm and to suggest appropriate
parameter ranges. Our results show that we produce ef-
fective estimates of the output pdf’s for each texture, thus
providing effective statistical estimates for texture classifi-
cation within any given textured region.

E.1 Filter Design Algorithm

Our complete filter-design approach can now be summa-
rized.



1. Given samples of the textures of interest
ti(z,y), 1 =1,..., N, estimate the associated
Rician statistics of m;(z,y) for each texture
using (18) and (19), over a range of Gabor
filter center frequencies (u,v) at an appropri-
ately selected scale oy.

. Estimate the statistics of the postfilter out-
put my, (x,y) using the results generated in
step 1 and (21). This gives a Gaussian dis-
tributed my, (x,y) for each t; per (22).

. Compute a series of optimal thresholds using
(26) that can be applied to m,(x,y) and com-
pute the associated segmentation error as-
suming equal a priori probabilities for each
texture per (28).

. Select the Gabor prefilter, determined by
(U,V,04), and Gaussian postfilter, deter-
mined by op, that provide lowest image-
segmentation error.

The overall spatial resolution of the system of Fig. 1 is
set by the combination of o4, and ;. Direct minimization
of (29) for all four parameters leads to unsatisfactory spa-
tial resolution because the error es(-) tends to decrease as
04o and o, increase. One possible modification is to add
some measure of expected segmentation error due to loss of
spatial resolution. This modification is beyond the scope
of the present work and the topic of related research [9].

F. Computational Efficiency

A significant advantage of the proposed filter-design al-
gorithm is that it is computationally more efficient than a
similar approach by Dunn and Higgins [7]. Admittedly, this
computational efficiency may not be critical in the design of
a single filter, but it does become a critical issue when the
number of possibilities undergoes a combinatorial increase
for the design of multiple filters [9], [29]. Thus, the effi-
ciencies gained in the present single-filter design procedure
will become increasingly important in the development of
multi-filter design methods [9], [29]. These improvements
in computational efficiency also are important in interac-
tive filter-design applications where slow algorithms and
lengthy computation times may be unacceptable.

The computational complexity of the new method is in
large part driven by the computation of P(u,v) in (12) for
each of the /' sample textures. First, R;(x,y) is computed
as a size N x N cyclic autocorrelation using the operation
F~Y|F{t:}|?} where ¢; is the size N x N sample texture.
Second, P(u,v) is calculated as F{ w(z,y)R;(z,y) } us-
ing an N x N window for w(z,y). These two steps are
implemented as three N x N FFT’s with a computational
complexity of ~ 3N2logaN.

The most direct comparison in computational complex-
ity is with the work of Dunn and Higgins, since this is
the only other approach that considers the design of a
single filter and uses segmentation-error criteria for de-
signing the filter [7]. The computational complexity of
this approach is primarily driven by the need to per-
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form = 200 2-dimensional Gaussian-windowed FFT’s (Fast
Fourier Transforms) on each sample texture ¢;. This results
in a computational complexity of ~ 200N2log,N for size
N x N sample texture images. Thus, the new method is
approximately 60 times more efficient than the method of
Dunn and Higgins. This may be somewhat overstated since
the extremely low computational expense related to FFT’s
in the new method makes the computational expense of
other tasks more significant. Nevertheless, there is a sig-
nificant reduction in computation.

IV. RESULTS

The proposed algorithms were tested on a range of Bro-
datz and synthetic texture images [38]. All images used
were 256 x 256 pixel 8-bit gray-scale images. The mean
values of all textures were equalized so that segmentation
based on average gray scale was not possible. In each ex-
ample a single value of o4 and o, are used to illustrate the
effectiveness of the selected prefilter center-frequency and
the accuracy of output statistical estimates. For guidelines
on selecting values for o4, see Dunn et al. [5]. In the fol-
lowing examples, several values for o, and o, are used to
demonstrate performance of the method for variation in
these two parameters.

We first start with a two-texture example that is later
compared to the two-texture Gabor-filter design method of
Dunn and Higgins [7]. Fig. 3 presents results for a pair of
Brodatz textures using the Gabor prefilter designed with
the new algorithm. The 256 x 256 input image i(z,y) in
Fig. 3(a) consists of a central d77 “cotton canvas” texture
region superimposed on a background of the d16 “herring-
bone weave” texture. The prefilter output m(z,y) is shown
in Fig. 3(b) for o4 = 5. The postfilter output m,, is shown
in Fig. 3(c) with o, = 10.

Fig. 3(d) is a plot of the predicted segmentation error as
a function of Gabor prefilter center frequency (u,v). The
intensity is linearly proportional to the segmentation er-
ror, with a white intensity indicating a segmentation error
of 100% and black 0%. The circular appearance of Fig. 3(d)
is due to a lowpass filter operation on each of the original
Brodatz images to eliminate high frequency artifacts [39].
The darkest point in the image, enclosed in the white box at
(U, V) = (.004, —.176) cycles per pixel, corresponds to the
center frequency of the designed Gabor prefilter. The par-
ticular frequency half-plane selected is a function of numer-
ical precision; it is apparent from the conjugate symmetry
of the Fourier transform and from the plot of segmentation
error as a function of center frequency that the error at a
center frequency (u,v) is equal to the error at (-u,-v).

To illustrate the effect of postfiltering on the overall seg-
mentation, the prefilter output in Fig. 3(b) is shown seg-
mented in Fig. 3(e). The segmentation thresholds for the
prefilter output are selected in a manner similar to that
outlined in (23) for the postfiltered image, except that the
predicted Rician pdf’s of the prefilter output are used in
place of the predicted Gaussian pdf’s of the postfilter out-
put. The segmented postfilter output is shown in Fig. 3(f)



PREPRINT OF WELDON, HIGGINS, AND DUNN: Gabor filter design for multiple texture segmentation 7

using the optimal thresholds from (23). The postfiltering
is seen to reduce the sporadic misclassifications seen within
the two textured regions in (e).

The measured histograms of the prefilter output m(z, y)
are shown in Fig. 4(a) as solid lines, and the predicted Ri-
cian pdf’s using (9) are shown as dashed lines. The curves
that peak at lower output amplitude correspond to the dark
inner region of Fig. 3(b), and the curves that peak at the
larger amplitude correspond to the bright outer border of
Fig. 3(b). The lower amplitude histogram has a Rayleigh
appearance, while the upper distribution has a more Gaus-
sian appearance characteristic of large A2 relative to N in
(9). The differences in the appearance of the two pdf’s
is confirmed by the predicted values of A?/N = 0.4 and
A?/N = 3.57 for the leftmost and rightmost histograms
respectively.

The predicted Gaussian pdf (dashed lines) and measured
output histograms (solid lines) are presented in Fig. 4(b)
for the postfilter output mp(z,y). The postfiltering re-
duces the tails of the measured histograms, as is evident
in comparing Fig. 4(a) to (b). A large amount of overlap
is seen in the prefilter histograms of Fig. 4(a) and suggests
the misclassifications evident in Fig. 3(e). The reduced his-
togram overlap after postfiltering suggests the reduction of
sporadic misclassifications seen in Fig. 3(f).

Fig. 5 provides a comparison between the proposed
method and that of Dunn and Higgins. In this figure, the
predicted segmentation error is shown for the “d16-d77”
example of Fig. 3, with intensity logarithmically propor-
tional to error. The positive u and v axes are labeled, with
(u,v) = (0,0) at the center of the image. The white box
surrounds the point at which the predicted segmentation
error is minimized, and is the selected Gabor-filter center
frequency. The “+” symbols overlaid on the plot are the
most highly rated frequencies selected by the method of
Dunn and Higgins. [7] In Fig. 5, the center frequencies se-
lected by the Dunn and Higgins method occur near local
minima in the error predicted by the present algorithm.
Further, the center frequencies selected by the two design
methods, (U, V) = (0,.195) and (U, V) = (.004, —.176), do
not differ greatly (ignoring the particular frequency half-
plane selected).

The new method selects the Gabor prefilter center fre-
quency with consideration of postfiltering effects, whereas
Dunn and Higgins method does not include postfiltering
effects [7]. Thus, the two algorithms do not necessarily se-
lect the same center frequencies. Both algorithms generate
effective filters, and, as shown in Fig. 5, there is good agree-
ment between predicted low error in the current method
and the most highly ranked designs in Dunn and Higgins
method. However, the present method offers significant
computational advantages, includes postfiltering effects, is
not restricted to pairs of textures, and directly leads to on-
going research on the design of multiple Gabor filters to
segment multiple textures [9], [29].

A major advance of our method is that one filter can
accommodate more than two textures. A three-texture

example is given in Fig. 6. The 256 x 256 image in
Fig. 6(a) is composed of two Brodatz textures and a ban-
dlimited random texture. The image consists of a cen-
tral region of texture d15 “straw” embedded in a larger
region composed of d77 “cotton canvas” imposed on a
background of lowpass-filtered uniformly-distributed ran-
dom noise. Three 256 x 256 samples of the textures were
used to design the Gabor prefilter. The prefilter output
m(z,y) is shown in Fig. 6(b) for the optimal Gabor filter
with 04 = 9. The mottled appearance of the bright outer
border of Fig. 6(b) is characteristic of a Rayleigh distribu-
tion. A Rayleigh distribution is expected since the outer
border corresponds to a bandpass version of the noise tex-
ture. The postfiltered image is provided in Fig. 6(c) with
op = 18. The spatial effect of postfiltering is most evident
in the removal of the narrow black regions in the Rayleigh
distributed outer border of Fig. 6(b).

The predicted error as a function of Gabor-prefilter
center frequency (u,v) is shown in Fig. 6(d). The op-
timal center frequency is enclosed by the white box at
(U, V) = (—.219,—.184) cycles per pixel. The plots of
segmentation error suggest other good candidate Gabor-
prefilter center frequencies may be located in other “dark
basins” in Fig. 6(d) that have low segmentation error. The
shape of the basins suggest filter orientations for asym-
metric filters. Another interesting feature in the images
is the “white ridges” separating the darker basins in er-
ror plots such as Fig. 6(d). These appear to correspond
to “crossover frequencies” where the pdf for one texture is
passing through the pdf of another texture, as the original
lower-amplitude pdf becomes the larger amplitude pdf.

Fig. 6(e) is the segmented version of the prefilter output
myp(x,y). The predicted (dashed lines) and actual (solid
lines) histograms for m(z,y) are in Fig. 7(a) for each of
the three constituent textures. Logarithmic coordinates
are used because of the large dynamic range spanned by
the three histograms on both axes. The large overlap in
the three histograms suggests the misclassifications seen in
Fig. 6(e). After postfiltering, the variance for each texture
is reduced. The resulting reduction in the overlap of the
three texture output distributions is seen in the postfilter
output statistics of Fig. 7(b). The segmentation thresholds
are set at the points at which the dashed lines of the three
predicted pdf’s intersect in Figs. 7 (b). The final segmen-
tation is in Fig. 6(f).

Fig. 8 contains results for an image comprised of two
synthetic textures plus one natural texture. The two syn-
thetic textures are comprised of arrays of “+’s” and “L’s”
and the natural texture is “cotton canvas.” As before, the
prefilter output and postfilter output are in Figs. 8(b) and
(¢). The predicted error in Fig. 8(d) extends throughout
the frequency plane since the synthetic textures do not re-
quire removal of undesired artifacts [39]. For this example,
the only misclassifications in the prefilter-output segmen-
tation occur at boundary discontinuities in Fig. 8(e). The
reduction of within-region misclassifications is confirmed
by the separation of the output distributions in Fig. 9(a)



and (b). The two larger amplitude distributions in these
figures correspond to the two synthetic textures, while the
lower distribution is for “cotton canvas.”

The extremely narrow measured distributions for the
synthetic textures are due to the coherence and lack of
randomness in these two textures. Although the predicted
distributions for the two synthetic textures are wider than
the measured distributions, the predicted means are rep-
resentative of the estimated means and the distributions
yield effective segmentation thresholds at the intersections
of the pdf plots. While the overstatement of the variance
in the predicted pdf’s of synthetic textures may seem un-
desirable, the generation of extremely narrow predicted
pdf’s could be considered even more undesirable, since
small variations in the mean value of the texture could dis-
place the measured distribution significantly outside the
predicted distribution. The narrowness of the measured
synthetic texture pdf’s also indicates that the prefiltered
texture is a single sinusoid with little noise. The mecha-
nisms causing over-estimation of variance for sinusoids are
discussed elsewhere [9], but, as seen in Fig. 8 and Fig. 9,
the predicted statistics remain useful for segmentation. In
Fig. 8(f), the innermost region is apparently smaller than
the corresponding textured region in (a). The displacement
in the region boundary is due to conflicting requirements
between the threshold required for optimum within-region
classification and the threshold that minimizes boundary-
localization error. The conflicting requirements are the
topic of ongoing research [9], [29].

Finally, the results presented in this paper are for a sin-
gle Gabor prefilter with a single Gausssian postfilter. Im-
proved segmentation results are expected with multiple fil-
ters, and the present methods lead toward the implemen-
tation of a multi-filter multi-texture design procedure. The
treatment of the single-filter multi-texture case, however,
establishes much of the groundwork for a multi-filter multi-
texture design method [9], [29].

V. DISCUSSION

The proposed filter-design method constitutes a compre-
hensive treatment of the design of a single Gabor filter to
segment multiple textures. The resulting Gabor prefilter
design was shown to produce effective segmentations using
a classifier based entirely on predicted output statistics.
Further, the predicted output statistics were based on the
frequency spectra of the sample textures (rather than sam-
ples of filtered textures) and included the effect of Gaus-
sian postfiltering. The overall development and supporting
results for the single-filter design provide important steps
toward the development of a multi-filter design procedure
in ongoing research [9], [29].

Finally, the previous discussion has focused on the design
of Gabor filters. The methods, however, are applicable
to other types of filters. This may be accomplished by
replacing the kernel G(u,v) in (12) by a different kernel
K (u,v) corresponding to the new filter type. The only
caveat is that necessary properties of G(u,v) discussed in
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the foregoing derivations set restrictions on K (u,v).

VI. APPENDIX: CALCULATION OF P(u,v,0y)

Below, we outline the steps leading to (12). This de-
velopment is included for completeness and summarizes
earlier results [8]. First, we let the input image i(x,y)
be composed of disjoint regions of N different textures,
ti(xz,y), 7 =1,...,N. Further, we assume that we are
given representative samples of the N textures.

Denote the power spectral densitiy of ¢t;(z,y) by S;(u,v).
When texture ¢;(z, y) is filtered by a Gabor prefilter h(x, y)
with fixed parameters (U, V, 0,), the total output power of
the prefiltered image iy (z,y) is

7 7S¢(u, v) |H (u, v)|? dudv ,

or o T
P(U, V) = / / Si(u,v) |G(u—U,v—V)|? dudv .

30
Equation (30) provides the total output power of the (Ga)—
bor prefiltered image i (x,y) for a particular Gabor pre-
filter and texture. The result in (30) leads to a more useful
form where P;(u,v) can be efficiently calculated for all Ga-
bor prefilter center frequencies (U, V') simultaneously. To
develop the more general result, we first consider a window
w(z,y) as follows:
2

1

w(z,y) = g(z,y) * glz,y) = 27 (V3oy) » (31)
where g(x,y) is the Gaussian function from (1). The win-
dow function w(z,y) is then determined entirely by pa-
rameter 4. The Fourier transform of the window function
w(z,y) is

F{g(,y) * g(a,y)} = [Gu,v)]* = e
where F {} denotes the Fourier transform operator, and
functions G(-) and g(-) are a Fourier transform pair from
(1,2). We finally arrive at the desired result by tak-
ing the Fourier transform of the windowed autocorrelation

’LU(IE, y)Rl(wa y)
Pi(ua v, Ug)

_ 22442
e 2(vV204)2

—4m 02 (u?4v?)

F{w(z,y)Ri(z,y) }

(G (u,v)]* * S;(u,v), (32)
where we add the argument og to P;(u, v) to exphc1tly in-
dicate the dependence of P; on this parameter. The de-
pendence arises because the functions w(z,y) and G(u,v)
depend on oy.

P;(u,v,04) represents total output power of the Gabor
prefiltered image ip, (z,y) for a Gabor prefilter with center
frequency (u,v) and parameter o4. Eq. (32) can be im-
plemented efficiently using the FFT. This discrete form of
(32) then gives P;(u,v) at a discrete set of center frequen-
cies (u,v) and for a particular o,.
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(f)

Fig. 3. Results for optimal filter center frequency (U, V') = (.004,—.176): (a) Input composite image: outer borderis d16 “herringbone weave,”
interior square is d77 “cotton canvas.” (b) Prefilter output m(z,y), og = 5. (c) Postfiltered output mp(x,y), op = 10. (d) Segmentation
error versus (U, V'), white=100%, black=0%; (U,V) = (0,0) at center of image. The white box indicates the center frequency of the
prefilter design. (e) Segmentation of prefiltered output. (f) Segmentation of postfiltered output.
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Fig. 4. Histograms of filtered images in Fig. 3: (a) Predicted (dashed) and actual (solid) histograms of m(z,y). (b) Predicted (dashed) and

actual (solid) histograms of myp(z,y). The histograms that peak at the lower amplitude in (a) and (b) correspond to the darker regions
in the images of m(z,y) and mp(z,y) in Fig. 3.
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-2

Fig. 5. Predicted error for the example of Fig. 3, d16 “herringbone weave” (border) d77 “cotton canvas” (center). The intensity is
logarithmically proportional to error, the center corresponds to ( u,v) = (0,0), and the lower right corner corresponds to positive u and
v. The white box surrounds the Gabor-filter center frequency selected by the proposed filter-design algorithm. The +’s correspond to
frequencies selected by the Dunn and Higgins algorithm. [7]
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(d)

(f)

Fig. 6. Results for optimal filter, center frequency (U,V) = (—.219,—.184): (a) Input composite image: outer border is lowpass uniform
noise, middle ring is d15 “cotton canvas”, interior square is d77 “straw.” (b) Prefilter output m(z,y), og = 9. (c) Postfiltered output
mp(x,y), op = 18. (d) Segmentation error versus (U, V), white=100%, black=0%; (u,v) = (0,0) at center of image. The white box
indicates the center frequency of the prefilter design. (e) Segmentation of prefiltered output. (f) Segmentation of postfiltered output.
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Fig. 7. Histograms of filtered images in Fig. 6: (a) Predicted (dashed) and actual (solid) histograms of m(z,y). (b) Predicted (dashed) and
actual (solid) histograms of mp(x,y). The histograms that peak at the lowest amplitude in (a) and (b) correspond to the darkest regions

(d77) in the images of m(z,y) and mp(x,y) in Fig. 6; the histograms peaking at the largest amplitude correspond to the brightest region
(noise).
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Fig. 8. Results for optimal filter center frequency (U,V) = (—.312,—.312): (a) Input composite image: outer border is “+,” middle ring
is “L,” interior square is d77 “cotton canvas.” (b) Prefilter output m(z,y), oy = 9. (c) Postfiltered output my(z,y), op = 12.6.
(d) Segmentation error versus (U, V'), white=100%, black=0%; (U,V) = (0,0) at center of image. The white box indicates the center
frequency of the prefilter design. (e) Segmentation of prefiltered output. (f) Segmentation of postfiltered output.
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(b)

Fig. 9. Histograms of filtered images in Fig. 8: (a) Predicted (dashed) and actual (solid) histograms of p m(z,y). (b) Predicted (dashed) and
actual (solid) histograms of mp(x,y). The histograms that peak at the lowest amplitude in (a) and (b) correspond to the darkest regions
(d77) in the images of m(z,y) and mp(x,y) in Fig. 8; the histograms peaking at the largest amplitude correspond to the brightest region

(“+7).
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