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ABSTRACT

Gabor filters have been applied sucessfully to a broad
range of multidimensional signal processing and image pro-
cessing tasks. The present paper considers the design of
a single filter to segment a two-texture image. A new ef-
ficient algorithm for Gabor-filter design is presented. The
algorithm draws upon previous results that showed that the
output of a Gabor-filtered texture is well represented by
a Rician distribution. The new algorithm uses the Rician
model to estimate the output statistics of a pair of sample
textures from their windowed autocorrelation functions. A
measure of the total output power is used to select the cen-
ter frequency of the filter and estimate the output statistics.
The method is further generalized to include the statistics
of post-filtered outputs. Experimental results are presented
that demonstrate the efficacy of the algorithms.

INTRODUCTION
1 Gabor filters have been successfully applied to many

imaging and multidimensional signal processing applica-
tions, such as document analysis [1, 2] and image texture
segmentation [3, 4, 5]. An advantage of these filters is
that they satisfy the minimum space-bandwidth product
per the uncertainty principle. Hence, they provide simul-
taneous optimal resolution in both the space and spatial-
frequency domains [6]. Further, they are bandpass filters,
conforming well to the human visual system’s robust capa-
bilities [6]. Generally speaking, Gabor filters are employed
to solve problems involving structurally complex textured
images. We consider the problem of segmenting textured
images in this paper.

We propose a new algorithm for efficiently designing Ga-
bor filters. The algorithm, since it is based on the sta-
tistical characteristics of the filtering process, also enables
one to predict the expected performance of the designed fil-
ters. Overall, our methodology gives greater insight into the
Gabor-filter design process than has previously been dis-
cussed. Our methods focus on the problem of designing
a single filter that discriminates between two different tex-
tures. But they can be generalized to the multi-texture case,
as we briefly discuss.

A central issue in applying these filters to texture segmen-
tation is the determination of the filter parameters. Jain and
Farrokhnia considered a filter-bank scheme, but the filters
were predetermined ad hoc, not designed [2]. One difficulty
with this approach is that the filter parameters are preset
and are not necessarily optimal for a particular processing
task. Recent work by Bovik presented an approach that uses
one Gabor filter per texture [3], and Dunn and Higgins pro-
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vided a detailed treatment of the optimal design of a single
Gabor filter to segment two textures [4].

This paper further considers the issue of designing a sin-
gle Gabor filter for discriminating between two textures
(the texture segmentation problem). The following section
first reviews the assumed signal-processing framework. Next
we propose a Gabor-filter design technique, based on auto-
correlation measurements, that is more efficient computa-
tionally than [4]. Then, using an input signal model, we
estimate the mean and variance of the Gabor-filter out-
put under the assumption that the distribution is Rician.
The estimated means and variances are used to establish
a threshold that minimizes the image-segmentation error
rate. Further, we consider the use of a post-filter in the
analysis. The post-filter, which reduces the variance of
the Rician-distributed Gabor-filtered output, results in a re-
duced image-segmentation error rate (at the expense of some
resolution loss). The results in the final section demonstrate
that the filter-design algorithm generates effective filters for
image segmentation; moreover, the results show that our
analysis accurately predicts filter-output statistics.

PROBLEM OVERVIEW

A block diagram of the fundamental signal processing un-
der consideration is shown in Fig. 1. The technique outlined
in the figure has been justified for texture segmentation by
previous investigators [3, 5]. Below, we provide a signal-
processing overview and define the filter-design problem.

The input image i(x, y) is assumed to be composed of two
textures and is first passed through a Gabor pre-filter with
impulse response h(x, y), where:

h(x, y) = g(x, y) e−j2π(Ux+V y) (1)

and,

g(x, y) =
1

2πσ2
g
e
−

(x2+y2)

2σ2
g (2)

h(x, y), referred to as a Gabor function, is a complex sinu-
soid, centered at frequency (U,V ), modulated by a Gaus-
sian envelope g(x, y). Further, the 2-D Fourier transform of
h(x, y) is:

H(u, v) = G(u− U, v − V ) (3)

where:

G(u, v) = e−2π2σ2
g(u

2+v2) (4)

is the Fourier transform of g(x, y). The parameters (U,V, σg)
determine h(x, y). From (3-4), we see that the Gabor func-
tion is a bandpass filter centered about frequency (U,V ),
with bandwidth determined by σg. Also (1-2) indicate that
σg determines the spatial extent of h(x,y). (We assume for
simplicity that the Gaussian envelope g(x, y) is a symmetri-
cal function.)

The output of the pre-filter stage ih(x, y) is the convolu-
tion of the input image with the filter response:

ih(x, y) = h(x, y) ∗ ∗ i(x, y) (5)
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Figure 1. Signal processing block diagram.

The magnitude of the first-stage output is computed in the
second stage (see [3, 5] for a justification of (6)):

m(x,y) = |ih(x,y)| = | h(x, y) ∗ ∗ i(x, y) | (6)

Finally, a (low-pass) Gaussian post-filter gp(x, y) is applied
to the magnitude output yielding the post-filtered image:

mp(x,y) = m(x,y) ∗ ∗ gp(x, y) (7)

where:

gp(x, y) =
1

2πσ2
p
e
− (x2+y2)

2σ2
p (8)

Post-filtering (7) was used in [4] to smooth out variations
in m(x, y). This is discussed further in a later section. The
final step, not shown in Fig. 1, is to segment the filtered
imagemp(x, y). To do this, we apply a threshold tomp(x, y);
points above the threshold are assigned to one texture, and
points below to the other.

Given the system of Fig. 1, we now state the Gabor pre-
filter design problem. Consider the input image i(x, y) com-
posed of two dissimilar textures, t1(x,y) and t2(x, y). The
problem is to find the Gabor function h(x, y) that provides
the greatest discrimination between the two textures in the
filtered image mp(x, y).

Our approach to the problem is as follows. Using a sta-
tistical model for i(x, y), find the Gabor function h(x, y)
that maximizes the output power ratio between the two tex-
tures in the pre-filter output ih(x, y). Then, upon apply-
ing a Gaussian post-filter, use the statistics of the output
mp(x, y) to determine a threshold that minimizes the image-
segmentation error in the final segmented image. The follow-
ing two sections outline the analytical arguments and design
procedures for our approach.

FILTER DESIGN ALGORITHM

In this section we propose a more efficient algorithm
(O(10N2log2N)) than in [4] (O(100N2log2N)) for designing
the Gabor pre-filter h(x, y). The proposed method assumes
that representative realizations of the two textures are avail-
able and draws upon the autocorrelations for each of the two
sample textures. The statistics of m(x, y) and mp(x, y) are
discussed in the subsequent section, along with the effects of
post-filtering.

Recall that the input image i(x, y) is composed of two
textures, t1(x, y) and t2(x, y). We assume that the given
realizations of these two textures are samples from ergodic
2-D random processes. Denote the power spectral densi-
ties of t1(x,y) and t2(x, y) by S1(u, v) and S2(u, v). The
subsequent analysis first considers the development for one
texture, t1(x, y), and later generalizes the results to both
textures.

When t1(x, y) is filtered by a Gabor pre-filter h(x, y)
with fixed parameters (U,V, σg), the total output power at
ih(x, y) is:

P1(U,V ) =

∞∫
−∞

∞∫
−∞

S1(u, v) |G(u− U, v − V )|2 dudv (9)

P1(u, v) can be calculated efficiently for all Gabor pre-filter
center frequencies (U,V ) simultaneously. To see this, con-
sider a window w(x,y) as follows:

w(x,y) = g(x, y) ∗ ∗ g(x, y) =
1

2π(
√

2σg)2
e
− (x2+y2)

2(
√

2σg )2 (10)
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where g(x, y) is the Gaussian (2). Note that w(x, y) is com-
pletely determined by parameter σg. From (2,4), the Fourier
transform of w(x,y) is:

F {g(x, y) ∗ ∗ g(x, y)} = |G(u,v)|2 = e−4π2σ2
g(u

2+v2) (11)

where F {} denotes the Fourier transform operator. We now
multiply the autocorrelation function R1(x, y) of the tex-
ture t1 by the window function w(x, y). The Fourier trans-
form F { w(x,y)R1(x, y) } of this windowed autocorrelation
yields:

P1(u, v) =

∞∫
−∞

∞∫
−∞

S1(α, β) |G(u− α,v − β)|2 dαdβ (12)

From Parseval’s theorem, P1(u, v) may be interpreted as the
total output power of ih(x, y) for a Gabor pre-filter with
center frequency (u, v) and parameter σg. This can also be
seen by direct comparison of (9) with (12). Relation (12)
can be efficiently implemented in a discretized form using
the FFT. The discrete form then gives P1(u, v) at a discrete
set of center frequencies (u, v) and a particular σg.

The foregoing analysis when applied to both textures,
t1(x, y) and t2(x, y), leads to the filter-design algorithm sum-
marized below:

1. Estimate the autocorrelations, R1(x, y) and R2(x, y), of
the two textures of interest using the given realizations of
the textures, t1 and t2.
2. Form the window function w(x,y) in (10) for a given Ga-
bor pre-filter parameter σg.
3. Compute P1(u, v) and P2(u, v) for the two textures using
a discrete FFT implementation of (12).
4. Choose the center frequency that maximizes the ratio of
P1(u, v) to P2(u, v) as follows:

(U,V ) = arg

{
max
(u, v)

(
P1(u, v)

P2(u, v)

)}
(13)

5. Repeat steps 2 through 4 for all σg under consideration.
6. Select the Gabor pre-filter, specified by (U,V, σg), that
gives the best segmentation error performance, based on cri-
teria discussed in the next section.

The above algorithm gives a Gabor pre-filter that empha-
sizes texture t1 over t2 in the output ih. An argument can
be made for instead minimizing the power ratio in (13); i.e.,
replace arg{max(·)} with arg{min(·)}. This results in a fil-
ter that emphasizes t2 over t1, which could be a better filter.
Finally, n textures can be considered instead of just 2, by
making pairwise power ratio comparisons using (13).

The power ratio (13) is equivalent to the ratio of second
moments of the pre-filtered outputs. In the absence of any
additional information, the output variances and squared
means should have the same ratio as the output powers.
Thus, a large power ratio should correspond to lower clas-
sification error rates, since this implies that the ratio of the
means for the two textures will be larger. Dunn and Higgins
have shown that m(x, y) in (6) has a Rician pdf for many
textures [4]. The total output power, because of its statisti-
cal interpretation as the second moment, establishes upper
bounds on the mean and variance of the Rician distributed
pre-filter output magnitude m(x,y).

FILTER OUTPUT STATISTICS

The previous section presented an efficient algorithm for
designing the pre-filter h(x, y). This section discusses how
to estimate the statistics of m(x, y) and mp(x, y) so that a
threshold on mp(x, y) can be set that minimizes the image-
segmentation error. An algorithm is developed to estimate

the mean and variance of the outputs,m(x, y) and mp(x, y),
for each texture’s expected Rician distribution. Once the
output distributions for the two textures of interest are
known, it is straightforward to calculate a threshold that
minimizes image-segmentation error.

We first discuss a signal model that provides a framework
for estimating the mean and variance of the pre-filter output
magnitude m(x,y) from the autocorrelation of a texture (or
more precisely from an expression of the form (12)). Assume
that ih(x, y) can be modeled approximately as a complex
exponential signal s(x,y) and a complex noise signaln(x, y):

ih(x, y) ≈ s(x, y) + n(x, y) = A e−j2π(Ux+V y) + n(x, y) (14)

The basic premise of (14) is that the pre-filter bandlimits
the input such that the output ih(x, y) essentially consists
of a small bandwidth around the center frequency (U,V )
of the pre-filter. In many cases, the pre-filter focuses on
a significant spectral peak of a texture. Thus, the output
signal ih(x, y) in this small passband is then modeled as
a single complex exponential plus complex bandpass noise.
Strongly periodic components of a texture would tend to be
represented by larger values of A.

The magnitude m(x, y) of the complex signal ih(x, y) has
a Rician distribution p(m) when n(x, y) is Gaussian band-
limited noise ; i.e.,

p(m) =
2m

N
e−(m

2+A2

N
) I0(

2mA

N
) (15)

where m = m(x, y), A is the amplitude of the complex ex-
ponential, and N is the total noise power. The distribution
is completely determined by the values ofA and N .

When A << N , p(m) approaches a Rayleigh distribu-
tion. This corresponds to the case where the filter output
power is dispersed across the passband rather than being
concentrated at the center frequency. Typically, the filter
design algorithm tends to favor selecting h(x, y) such that
the filtered version of t1 in m(x,y) will be Rician, while the
corresponding filtered version of t2 inm(x, y) will be approx-
imately Rayleigh.

The model (14) permits the output statistics of m(x, y)
to be estimated from P1(u, v). Assume that the Gabor pre-
filter passes spatial-frequencies localized around the center
frequency (U,V ) and rejects energy at other frequencies.
Then a locally equivalent model in the spatial-frequency
plane for an input texture t1(x, y) to the pre-filter is a power
spectral density S1(u, v) consisting of a complex exponential
plus white noise:

S1(u, v) ≈ A
2δ(u− U, v − V ) +

η

4
(16)

We emphasize that this model is only valid within the ap-
proximate passband of the pre-filter. When the model (16)
is applied to (12) of the filter design algorithm,

P1(u, v) ≈ A2 e−4π2σ2
g[(u−U)2+(v−V )2] +

η

16πσ2
g

(17)

In (17) the first term arises from the sinusoidal term of (14).
The second term represents the noise output power of the
Gabor pre-filter, and gives the parameter N in (15): N =
η

16πσ2
g
.

Given (17), the Rician parameters A and N may be es-
timated from P1(u, v). Denote the power for texture t1 at
pre-filter center frequency (U,V ) as P0. The half power point
of P1(u, v) in the absence of noise occurs at a frequency off-
set of ν = .1325

σg
(other offsets can be used). Then,

P0 = P1(U,V ) = A2 +N,

Pν = P1(U ± ν, V ) = A2/2 +N (18)
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which gives relations for the Rician parameters:

A2 = 2(P0 − Pν), N = 2Pν − P0 (19)

Given A and N , the mean µg and variance s2g of the Rician
pdf characterizing m(x,y) can be calculated. This is done
for both sample textures using (U,V ) from (13) and using
P1(u, v) and P2(u, v) from (12) in place of P1(u, v) in (18).

Finally, an estimate is made for the output statistics of
mp(x, y) under varying degrees of post-filtering. From (7)
and (8) the post-filtering process can be considered as a spa-
tial averaging of independent samples ofm(x, y). Under this
assumption, the mean µp and variance s2p of the post-filtered
output can be approximated as:

µp = µg, s2p = s2g σ
2
g/σ

2
p (20)

For large ratios of σ2
p/σ

2
g , the post-filtered output pdf will

become approximately Gaussian due to the central limit
theorem. The image-segmentation threshold is then set as-
suming a bimodal Gaussian distribution with equal a priori
probabilities for the two textures [8]. The effect of post-
filtering is particularly pronounced as the ratio A/N be-
comes small. The Rician pdf approaches a Rayleigh pdf
with small ratios of A/N . The longer tails on the Rayleigh
distribution lead to large image-segmentation errors when
post-filtering is not employed. The inclusion of post-filtering
in the proposed methods enables a balanced treatment of Ri-
cian and Rayleigh distributed outputs.

The following is a summary of the algorithm for select-
ing a threshold and estimating the output distributions for
the magnitudes of the Gabor pre-filter output,m(x, y), and
post-filter output, mp(x,y):

1. Obtain P0 and Pν from P1(u, v) and P2(u, v) using (18)
with (U,V ) from (13).
2. Calculate A and N for both textures using (19).
3. Estimate for each texture the pdf for m(x,y) by substi-
tuting the estimates of A and N into (15). Calculate the
means and variances ofm(x,y) for both textures.
4. Calculate post-filter output statistics using σ2

p/σ
2
g in (20),

with the Gabor pre-filter output means and variances from
step 3.
5. Set the image-segmentation threshold to minimize the er-
ror rate, given the distributions of the two textures and as-
suming equal a priori probabilities. In the post-filter case,
the Gaussian assumption admits a closed-form solution for
the threshold [8].
6. Repeat steps 4 and 5 for each σ2

p under consideration.
7. Choose the best compromise between the image resolu-
tion (determined by σp) and image-segmentation error (de-
termined by σ2

p/σ
2
g).

Note that the foregoing algorithm is not necessarily lim-
ited to the center-frequency (U,V ) chosen by the frequency
selection algorithm. However, by choosing a peak power
point from (13), the frequency-selection algorithm tends to
choose a center frequency that should be well represented by
the presumed model (16).

RESULTS

Experiments were conducted on a range of Brodatz and
synthetic texture images to test the filter-design algorithm
and to test the output statistical estimates. Figure 2
presents segmentation results for a pair of Brodatz textures.
The 256x256 input image i(x, y) in Fig. 2a consists of a
central d77 texture region superimposed on a background of
the d16 texture. The pre-filter output magnitude m(x, y)

is shown in Fig. 2b. The measured histograms of m(x, y)
are shown in Fig. 2c as solid lines, and the predicted Ri-
cian pdf’s using (15) are shown as dashed lines. The curves
that peak at lower output amplitude correspond to the dark
outer border (d16) of Fig. 2b, and the curves which peak
at the larger amplitude correspond to the bright central re-
gion (d77) of Fig. 2b. The measured output statistics are
seen to correspond well with the predicted Rician statistics.
The results for a post-filter with σp/σg = 2 are shown in
the second row of Fig. 2. The post-filtered outputmp(x, y)
is shown in Fig. 2d. The predicted Gaussian pdf (dashed
lines) and measured output histograms (solid lines) are pre-
sented in Fig. 2e for the post-filtered image. The segmented
image is shown in Fig. 2f for the post-filtered output.

The post-filtering reduces the tails of the measured his-
tograms in Fig. 2. A large amount of overlap is seen in the
pre-filter histograms of Fig. 2c. It is apparent that a seg-
mentation without post-filtering will result in a large error
rate. The histogram overlap is virtually eliminated by the
post-filtering. This results in a low error rate for the binary
segmentation of the image in Fig. 2f.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Gabor-filtered d16 ”herringbone weave” (border) d77 ”cotton canvas” (center) composite image, σg = 5, (U,V ) =
(−.035,−.047) cycles/pixel. (a) Input image. (b) Magnitude of Gabor pre-filter output. (c) Histogram of Gabor pre-filter output
magnitude, dash = predicted, solid = actual. (d) Post-filtered output, σp = 2σg. (e) Histogram of post-filtered output, σp = 2σg,
dash = predicted, solid = actual. (f) Thresholded post-filtered image, σp = 2σg , threshold = 10.
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