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Abstract

1 We present an algorithm for the design of multiple
Gabor filters for the segmentation of multi-textured im-
ages. We draw upon earlier results that provide a seg-
mentation error measure based on the predicted vector
output statistics of multiple filter channels. This seg-
mentation error measure is used to design the filter
channels for a particular segmentation task. In our ap-
proach, the filter parameters are free to vary from chan-
nel to channel and are not restricted to some predeter-
mined decomposition of the frequency plane. Thus, our
method can generate more effective filter designs and
result in more effective features for image segmenta-
tion than prior methods. Finally, we present texture
segmentation results that confirm the efficacy of the
proposed procedure. These results show effective seg-
mentation of 8 textures using as few as 2 filters, whereas
earlier approaches required 13 to 40 filters to segment
5 textures.

1. Introduction

We present a comprehensive procedure for the design of
multiple filters for texture segmentation. Our approach
permits greater flexibility in filter design and overcomes
limitations in earlier methods. Although many inves-
tigators have successfully applied Gabor filters to the
segmentation of multi-textured images [1–10], a com-
prehensive procedure for the design of multiple Gabor
filters for texture segmentation remains largely an open
issue. Drawing upon earlier results, we propose a new
algorithm for the design of multiple Gabor filters to
segment multiple textures. This algorithm overcomes
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limitations in prior filter-bank approaches, where the fil-
ters were selected from a limited set of predetermined
candidate filters, and overcomes limitations in prior
filter-design approaches, where the Gabor filters were
designed for a particular texture-segmentation task.

Several investigators employed filter-bank approach-
es using wavelet and other similar filter-bank decom-
positions [2,11–13]. These filter-bank approaches have
sparse sets of candidate filters that provide fixed cov-
erage of the frequency plane or fixed relationships be-
tween filter bandwidths and center frequencies. Other
investigators have considered filter-design approaches.
Bovik et al. [1] focused on the response of a single filter
to a single texture rather than the general multi-filter
multi-texture problem. Earlier work by the present au-
thors [3,4,6] also focused on the design of single filters.
These earlier filter-bank and filter-design approaches
did not consider combined effects of Gabor filtering and
subsequent Gaussian lowpass filtering, did not gener-
ate predicted vector output statistics of multiple filter
channels, and did not provide a comprehensive mathe-
matical framework for filter design. In addition, prior
design methods used least-square reconstruction error
or channel energy criteria for filter design rather than
using predicted segmentation error as the design crite-
ria [14].

To address these issues, we propose a new algo-
rithm for the design of multiple Gabor filters to seg-
ment multi-textured images. This new algorithm over-
comes the limitations found in earlier approaches and
draws upon our recent results that provide the pre-
dicted multivariate output statistics of multiple filter
channels and provide predicted segmentation-error as
a filter-design basis [7,8]. In our method, we first form
an extensive set of candidate filters that effectively pro-
vide overlapping coverage of the frequency plane at
multiple resolutions. We then use a forward-sequential
procedure to iteratively design the multi-filter system,
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Figure 1: Multichannel system for segmenting a textured image.

adding one filter at a time [14]. At each iteration, a vec-
tor measure of segmentation error is used to select the
best filter when combined with the filters from prior it-
erations. Although the forward-sequential filter design
procedure is sub-optimal, we find that our methods
produce effective filter designs.

In Section 2 we first review the image processing
system used in our procedure and prior results on pre-
dicted segmentation error. We then describe the filter
design algorithm in Section 3. Finally, we present re-
sults in Section 4 that demonstrate effective texture
segmentation using the designed set of filters.

2. Multichannel scheme

Fig. 1 illustrates the image processing system consid-
ered in our design procedure. Further details can be
found in [5–8].

In Fig. 1, the input image i(x, y) is comprised of
disjoint regions of N textures t1, t2, . . . , tN with
N ≥2. This input is applied to k filter channels, where
each channel is comprised of a bandpass Gabor prefilter
hj(x, y), a magnitude operator | · |, and a Gaussian
postfilter gpj(x, y). Typically, the number of channels
k is less than the number of textures N . The Gabor
prefilter in channel j has impulse response hj(x, y):

hj(x, y) =
1

2πσ2
gj

e
− (x2+y2)

2σ2
gj e−j2π(ujx+vjy) (1)

where (uj , vj) is the center frequency of the filter, and
a symmetric filter response is used for simplicity. The
Gabor prefilter hj(x, y) has a frequency response

Hj(u, v) = e
−2π2σ2

gj
[(u−uj)

2+(v−vj)
2]

(2)

where (u, v) is spatial frequency.
The output of the prefilter ihj (x, y) is the convolu-

tion of the input image with the Gabor prefilter

ihj (x, y) = hj(x, y) ∗ i(x, y), where ∗ denotes convolu-
tion in two dimensions. The magnitude of the Gabor-
prefilter output is then taken, mj(x, y) = |ihj (x, y)|,
where mj(x, y) has been shown to have approximately
Rician statistics for filtered textures [5,6,8,10].

A lowpass Gaussian postfilter gpj(x, y) is then ap-
plied to mj(x, y) yielding the postfiltered image in the
jth filter channel mpj (x, y) = mj(x, y) ∗ gpj (x, y) with

gpj (x, y) =
1

2πσ2
pj

e
− (x2+y2)

2σ2
pj , (3)

and where σpj determines the Gaussian postfilter in the
jth channel. Thus, the parameters θj = (uj, vj, σgj , σpj)
completely determine filter channel j, and these param-
eters are free to vary from channel to channel. Matrix
Θk = [θ1, θ2, . . . , θk]

T determines the filter parameters
of the k channels, where superscript T indicates trans-
pose, and Θk is a k row by 4 column matrix. We refer
to ihj (x, y) as the prefiltered image, mj(x, y) as the pre-
filter output, and mpj (x, y) as the postfilter output for
the jth channel.

A Bayesian classifier based on predicted multivari-
ate output statistics is used in Fig. 1 to generate the
classified image c(x, y) from the vector output of the
k filter channels. Morphological postprocessing is used
to remove misclassifications near boundaries between
different textures and to generate the final segmented
image is(x, y). Details on the classifier and postpro-
cessing are provided in [8,10].

For the system in Fig. 1, we have previously shown
that the output statistics of the k channels for a given
input texture ti are approximately given by the mul-
tivariate Gaussian probability density function (pdf)
pi(mp,Θk) for a given set of filter parameters Θk [7]:

pi(mp,Θk) = (4)

1

(2π)k/2|Ci |1/2
e−(

(mp−µi)TCi
−1

(mp−µi)
2 )



wheremp is a vector sample of the k-dimensional post-
filter-output vector, µi is the mean postfilter-output
vector, Ci is the covariance matrix of the postfilter
outputs.

For the system in Fig 1, the predicted texture-seg-
mentation error Et(Θk) is [7]:

Et(Θk) ≈
N−1∑
α=1

N∑
β=α+1

(PαPβ)1/2

N − 1
e−B(tα ,tβ,Θk)

+
1

k

k∑
j=1

2(N )(σ2
gj + σ2

pj)

N2
(5)

where Pα and Pβ are a priori probabilities of textures
tα and tβ occurring in the image, the image dimen-
sions are N × N , B(tα, tβ,Θk)) is the Bhattacharyya
distance [15] between textures tα and tβ for a given
set of filter channels Θk, and the term (σ2

gj + σ2
pj)

approximates the combined localization effects of the
Gabor prefilter and Gaussian postfilter. This total er-
ror Et(Θk) is used in our filter-design algorithm as the
basis for designing the Gabor filters in Section 3.

3. Filter design algorithm

Given the predicted segmentation error Et(Θk) in (5),
we proceed in this section to develop the filter-design
algorithm. We first construct a collection Ψ of individ-
ual candidate filter channels, from which collection the
set of k channels will be constructed:

Ψ = { θ } = { (u, v, σg, σp) } (6)

such that:

σg ∈ Σ

σp ∈ {λσg | λ ∈ Λ}

(u, v) ∈

{ (
η1√
8π2σ2

g

, η2√
8π2σ2

g

)}
,

where η1 ∈ {. . . ,−1, 0, 1, 2, . . .} , η2 ∈ {0, 1, 2, . . .},
−0.5 ≤ u < 0.5 , and 0 ≤ v < 0.5. The set Σ contains
candidate prefilter σg’s, and Λ is a set of constants de-
termining candidate ratios of the postfilter σp relative
to each value of the prefilter parameter σg. For each
value of σg, the center frequencies (u, v) are chosen to
create an overlapping tessellation of candidate Gabor
prefilters in the frequency half-plane. Finally, we note
that candidate filters in Ψ are not limited to octave
scalings of σg.

The number of possible combinations of k channels
arising from the candidate filter set Ψ is prohibitive.

To mitigate this problem, we use a forward-sequential
filter-selection method to find the best k-channel de-
sign from the possible candidate filter-channel combi-
nations [14]. In the forward-sequential method, the
first filter channel selected is the best individual filter
channel θ1 such that Et(θ1) ≤ Et(θξ), ∀ θξ ∈ Ψ, where
θ1 ∈ Ψ. To proceed further, we first define the filter
channel set at iteration δ of the forward-sequential al-
gorithm as

Θδ =


θ1
θ2
...
θδ

 =


u1 v1 σg1 σp1
u2 v2 σg2 σp2
...

...
...

...
uδ vδ σgδ σpδ

 (7)

where δ ≤ k, and k is the number of desired filter
channels in the texture-segmentation system of Fig. 1.

Using (7), subsequent steps in the forward-sequen-
tial filter-design algorithm can then be written in a
recursive form. Filter parameters Θδ at the δth stage
of the forward-sequential algorithm are then defined in
terms of the filter parameters Θδ−1 at stage δ − 1:

Θδ =

[
Θδ−1

θδ

]
(8)

such that

Et

([
Θδ−1

θδ

])
≤ Et

([
Θδ−1

θξ

])
, ∀ θξ ∈ Ψ

where Θδ is a function of θδ , and where Θδ−1 is a fixed
matrix established at step δ− 1 of the forward-sequen-
tial procedure. The forward-sequential algorithm ter-
minates when the desired number of filter channels k
is reached (i.e., when δ = k) or when a desired error
Et(Θ) is reached.

3.1. Design algorithm

Combining the foregoing results, the procedure for de-
signing k filter channels comprised of k Gabor prefilters
and k Gaussian postfilters is:

Step 1. Construct a large collection Ψ of individual
candidate filter channels using (6). A typical set of pa-
rameters for constructing Ψ would be Σ = {2, 4, 8} and
Λ = {1.5, 2}, giving possible combinations of (σg, σp)
of { (2,3), (2,4), (4,6), (4,8), (8,12), (8,16) }.

Step 2. Find the best single filter-channel θ1 such
that Et([θ1]) ≤ Et([θξ]) ∀ θξ ∈ Ψ.

Step 3. Search for subsequent filters using the for-
ward-sequential algorithm in (8), terminating when the
desired number of filter channels k is reached. Alter-
natively, terminate the algorithm when the predicted
segmentation error Et(Θ) reaches some desired level.
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Figure 2: Results for Σ = {2, 3, 4.5}, Λ = {1.5}. (a) Input composite 256×256 image comprised of Brodatz textures
d77, d84, d55, d17, d24, d21, d57, d68. (b) Two channel segmentation, error=0.09, Θ2 = [(0.19, 0, 4.5, 6.75),
(0.17, 0.125, 4.5, 6.75)]T . (c) Six channel segmentation, error=0.08, Θ6 = [(0.19, 0, 4.5, 6.75), (0.17, 0.125, 4.5, 6.75),
(−0.08, 0.13, 4.5, 6.75), (0.11, 0, 4.5, 6.75), (−0.3, 0.25, 2, 3), (0, 0.19, 3, 4.5)]T.

4. Results

Fig. 2 shows results of our algorithm for an 8-texture
image. The 256×256 pixel 8-bit gray-scale input image
in Fig. 2(a) consists of eight Brodatz textures [16]. The
segmented image is(x, y) using two filter channels is
shown in Fig. 2(b) for the image processing system in
Fig. 1. Finally, a segmentation using six filter channels
is shown in Fig. 2(c) with only 8% of the pixels in the
image being misclassified. Using 2-6 Gabor filters, we
achieve effective segmentation results for 8 textures.
By comparison, Jain and Farrokhnia obtained similar
segmentation results using 13 filters [2] and Randen
and Husøy also achieved similar results using 13 to 40
filters [17] in images containing only 5 textures. Further
results for a variety of synthetic and natural textures
are given in Figs. 3 and 4.
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Figure 3: Results for Σ = {2.5, 5, 10, 20}, Λ = {1.7}. (a) Input composite 256× 256 image comprised of textures
“noise,” d29, d9, “+,” d84. (b) Two channel segmentation, error=0.07, Θ2 = [(−0.31, 0.31, 5, 8.5), (0.14, 0, 5, 8.5)]T.
(c) Four channel segmentation, error=0.05, Θ6 = [(−0.31, 0.31, 5, 8.5), (0.14, 0, 5, 8.5), (0.09, 0.05, 5, 8.5),
(−0.41, 0.34, 2.5, 4.25)]T.
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Figure 4: Results for Σ = {2.5, 5, 10, 20}, Λ = {1.7}. (a) Input composite 256× 256 image comprised of textures
d12, d17, d55, d32, d29. (b) Two channel segmentation, error=0.11, Θ2 = [(0.08, 0.13, 5, 8.5), (0, 0.20, 5, 8.5)]T.
(c) Four channel segmentation, error=0.07, Θ6 = [(0.08, 0.13, 5, 8.5), (0, 0.20, 5, 8.5), (−0.02, 0.06, 5, 8.5),
(0.19, 0, 2.5, 4.25)]T.
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