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ABSTRACT

This paper presents an integrated approach using mul-
tiple Gabor filters for the segmentation of multi-textured
images. The approach includes both the design of the con-
stituent Gabor filters and the design of the classifier and
postprocessing. The classifier uses a mixture density to re-
duce localization error at texture boundaries, and the post-
processing uses morphological operators to remove spuri-
ous misclassifications at texture boundaries. Results are
presented that confirm the efficacy of the postprocessing
methods and the overall integrated approach.

1. INTRODUCTION

! The segmentation of textured images remains a difficult
problem in image processing [1-5]. Earlier Gabor filter-
based texture-segmentation methods employed: (1) afilter-
bank, made up of a large bank of ad hoc selected Gabor
filters with predetermined parameters; or (2) a filter-design
approach, where a small set of Gabor filters is specifically
designed to solve a particular problem [6-10]. The large
number of filters used in filter-bank approaches can lead
to associated disadvantages in computing a large number
of filtered images and classifying a large-dimension feature
space [1-3,11]. Early efforts with the filter-design approach
handled few textures (typically 2) or focused on 1— 2 filters
only [9,10].

Our work addresses the filter-design approach. Recently,
we proposed a new method for the design of multiple Gabor
filters for segmenting multi-textured (> 2) images [12,13].
The new method provides an integrated approach that gen-
erates both the filter designs and necessary postprocessing
for a complete texture-segmentation system. This method
removes restrictions on the number of filters and on the
number of textures. The new method offers the potential to
handle more complex texture-segmentation problems with-
out using an inordinate numbr of ad hoc filters.

As part of our research, we are interested in texture seg-
mentation with a small number of Gabor filters. Not unex-
pectedly, experimental evidence suggests that segmentation
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error tends to increase as the number of filters decrease,
particularly near texture boundaries. This increase in er-
ror largely appears to be driven both by the contradictory
demands of low classification error and high spatial reso-
lution and by complex relationships between feature-vector
dimensionality and multidimensional decision surfaces. To
address these potential sources of error, we propose a classi-
fier that is based on a mixture density to reduce localization
error at texture boundaries, and we propose morphological
postprocessing to remove spurious misclassifications at tex-
ture boundaries. The remainder of this paper describes our
methods, outlines the classifier and postprocessing scheme,
and provides some representative results.

2. MULTICHANNEL SCHEME

Fig. 1 illustrates the general k-channel texture-segmentation
scheme that we use. The input image i(z,y) is assumed
to be composed of N disjoint textures ti,to,...,tx with
N >2. A single filter channel in the scheme consists of
a bandpass Gabor prefilter hj(z,y), a magnitude operator,
and a Gaussian postfilter gp, (z,y). References [5,6,8,9]
justify the components making up each filter channel.

The Gabor prefilter has impulse response hj(z,y), where
the subscript j denotes the particular filter channel and
1<j<k:
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The function hj(z,y) is a complex sinusoid centered at fre-
quency (uj,v;) modulated by a Gaussian envelope of spa-
tial extent o4, [10]. For simplicity, we also assume that
the Gaussian envelope of h;(z,y) is a symmetric function.
Next, the output of a prefilter stage in; (x,y) is the convo-
lution of the input image with the Gabor prefilter

in; (@, y) = hj(z,y) * i(z,y) (2)

where * denotes convolution in two dimensions, and the
subscript h; indicates the output of the Gabor prefilter in
the jth filter channel. The magnitude of the Gabor-prefilter

output is computed in the following stage as
© IEEE 1996
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Figure 1: Multichannel scheme for segmenting a textured image.

where m;(z,y) has been shown to have approximately Ri-
cian statistics for filtered textures [6-8,13]. A lowpass Gaus-
sian postfilter gy, (x,y) is then applied to m;(z,y) yielding
the postfiltered image in the jth filter channel

mp; (T, y) = m;(z,y) * gp,; (2,y) (4)
with
1 _(x220+y2)
9p; (z,y) = Pi (5)
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where o0;,; determines the Gaussian postfilter in the G
channel. Thus, the parameters (u;,v;,0q;,0p;) completely
determine filter channel j. Moreover, the values of the fil-
ter parameters are free to vary from channel to channel.
Generally, we will refer to in;(x,y) as the prefiltered im-
age, mj(x,y) as the prefilter output, and my,(z,y) as the
postfilter output for the jth channel.

A vector classifier generates the classified image c¢(z,y)
based on the vector output of the k filter channels. A
Bayesian classifier based on predicted multivariate output
statistics is used. Finally, provision is made for morpholog-
ical postprocessing to address misclassifications at bound-
aries between different textures. The result of the addi-
tional postprocessing of the classified image c(z,y) gives
the final segmented image is(x,y).

3. CLASSIFIER AND POSTPROCESSING

Below, we give more detail on the proposed classifier and
morphological postprocessing for the multichannel scheme
of Fig. 1. First, we describe the use of a mixture density
in the classifier to reduce localization error in the vicinity
of texture boundaries. Then, we discuss the use of a hy-
brid “n-ary” morphological operation to remove spurious
misclassifications near texture boundaries. The following
discussion assumes that the filter channels have been de-
signed using the methods in [12,13].

3.1. Mixture Density Classifier

In previous research on the design of single filter channels,
we presented a Gaussian statistical model for the postfil-
tered output my, (z,y) [6-8]. The success of this statistical

model in predicting single-channel texture segmentation er-
ror and in developing single-channel design algorithms leads
us to consider a multivariate Gaussian model for the vector
output statistics of a set of k filter channels.

Following the single-channel development of [7,8,13],
the envelope m; (,y) of the prefiltered image in the j*" fil-
ter channel has an approximately Rician distribution. The
postfiltering operation in the filter channel performs a spa-
tial average of the prefilter output m;(z,y), leading to an
approximately Gaussian distribution for the postfilter out-
put myp, (z,y). The multivariate Gaussian pdf of the filter-
channel output for input texture ¢; is then

pi(mp,Ci ) = (6)
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where myp = [mp, Mp, ... mp, |7 is a vector sample of the
k-dimensional postfilter-output vector, C; is the covari-
ance matrix of the postfilter outputs, and

Wi = (i, iy ... pi, )T = E[mp) is the mean postfilter-
output vector.

The components p;; of mean vector p; can be deter-
mined for each texture t; and each filter channel j using
the single-filter methods of [7,8]. The covariance matrix Cj
presents greater difficulty, since it implies a need for samples
of the postfilter output for all candidate filters. However,
the single-filter methods of [7,8] do yield the diagonal el-
ements of the covariance matrix, and these correspond to
the variances sgij of the output of individual filter channels.

Thus, we propose using the values of sf)ij along the diago-
nal of C; with all off-diagonal elements equal to zero. To
reduce the likelihood of having strongly correlated features,
the candidate filters are restricted such that the spatial-
frequency responses of any of the constituent filters do not
overlap significantly [13].

In practice, we have seen that a Bayesian vector classi-
fier based on the pdf’s in (6) performs well within textured
regions but can exhibit localization error at texture bound-
aries; i.e., the boundary is displaced from its true loca-
tion [13]. We also have observed that this localization error
at texture boundaries is reduced by modifying the Bayesian
classifier using a mixture density. This mixture-density ap-
proach has the advantage that it is readily implemented



Figure 2: Reduction of localization error using mixture density. (a) Input composite image, outer border = d68 “wood
grain,” middle ring = d84 “raffia,” center square = d24 “pressed leather.” (b) Segmentation error without using mixture
density, measured segmentation error = 0.10, misclassified pixels in white. (¢) Segmentation error using mixture density,
measured segmentation error = 0.04, misclassified pixels in white. Only three filter channels were used for the segmentations
in (b) and (c) with parameters (uj,vj,0q;,0p;) = (0.14,0,6,9.6), (-0.22,0.28,3,4.8), and (0.27,0.02,3,4.8).

for the present case of multivariate-Gaussian classes. The

procedure for generating the classifier is to first select the

largest variances s2, _ along each feature axis correspond-
J

ing to each filter channel j:
Szzwmazj >sp.,, acf{l2. .. N} (7)

Then, form a covariance matrix Cmaz, Wwhose diagonal el-
ements are the maximum variances sgmazj ,J =1,2,... k.
For texture t;, the multivariate form of the mixture density
DPmiz; is then

P (1) = 3 (pi(1p, Comae) + pi(mp, 1)), (8)

where p; (myp,C;) is the original multivariate Gaussian pdf

from (6) and p;(mp,Cma=) is the multivariate Gaussian
formed by taking the maximum diagonal elements of all the
covariance matrices for the textures. The proposed classi-
fier for texture segmentation is then a Bayesian classifier
assigning the output to the texture whose mixture density
has the largest probability density; i.e. c(z,y) = a such
that

Pmizq (mp(xv y)) > Pmizg (mp(xv y))7 V3 (9)

where 8 € {1,2,...,N}, and pmiz, is the mixture density
for texture tg given in (8).

3.2. Morphological Postprocessing

Another difficulty observed in practice is the appearance of
narrow regions in ¢(z,y) that are misclassified as a third tex-
ture near the boundary between two textures. These nar-
row misclassified regions appear to be caused by the trajec-
tory of the feature vector as it makes the transition through
feature space at the boundary. A two-step hybrid “n-ary”
morphological postprocessing operation is used to reduce
these narrow misclassified regions. In the first step, pixels

in ¢(z,y) whose neighborhood (neighborhood size propor-
tional to spatial extent of filter-channel response) consists
entirely of one texture class are left unchanged; otherwise,
the pixel value is set to zero to indicate it is no longer as-
signed to any class. This first step resembles a morpholog-
ical erosion operation. In the second step, the classified
regions are propagated back into the unassigned regions
based on the most common class within 8-neighborhoods.
This second step resembles a morphological dilation opera-
tion. The resultant image is then the final segmented image
7:5 (.’IJ, y) .

Alternative classifier and postprocessing approaches are
the topic of ongoing research [13]. However, the present
methods serve to illustrate the effectiveness of the designed
filters in a complete system while addressing issues that can
arise when a small number of filter channels is used relative
to the number of textures [12,13].

4. RESULTS

Experimental results that illustrate the complete system of
Fig. 1 with a particular focus on the effects of the mixture-
density classifier are shown in Fig. 2. The image in Fig. 2(a)
consists of three Brodatz textures: an outermost region of
“d68 - wood grain”, a middle ring of “d84 - raffia”, and
an innermost square region of “d24 - pressed leather” [14].
Fig. 2(b) shows the segmentation error (misclassified pixels
are the white regions) in is(x,y) when the mixture density
is not used; i.e., with Bayesian classification based on (6).
Fig. 2(c) shows the segmentation error when the mixture
density of (8) is used for classification. Morphological post-
processing was not altered in Figs. 2(b) and (c), so that
only the effect of modifying the classifier is observed. The
improvement near texture boundaries that is apparent in
comparing Figs. 2(b) and (c) is confirmed by the reduction
of total measured error from 10% to 4%.

The results in Fig. 3 illustrate the effects of the mor-
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Figure 3: Reduction of missclassifications near texture-boundaries using morphological postprocessing. (a) Input composite
image, outer border = lowpass noise, middle ring = d21 “french canvas,” center square = d55 “straw matting.” (b) Output
of mixture-density classifier ¢(z,y) showing pronounced misclassification error at boundary between the outermost region of
lowpass noise texture and the middle region of d21 texture. Note that the boundary is misclassified as the third (innermost)
texture, d55. (c) Final segmentation after morphological postprocessing to remove localization error at texture boundaries,
measured segmentation error = 0.05. Only two filter channels were used for the results in (b) and (c) with parameters

(uj,v5,04;,0p;) = (0,0.36,3,4.8) and (-0.17,0.41,3,4.8).

phological postprocessing on misclassifications at texture
boundaries. The image in Fig. 3(a) consists of an outer-
most region of lowpass noise, a middle ring of “d21 - french
canvas”, and an innermost square region of “d55 - straw
matting”. Fig. 3(b) is the classifier output ¢(z,y) using a
mixture-density. A prominent band of misclassified pixels is
seen along the entire boundary between the outermost tex-
ture (lowpass noise) and the middle ring of texture (d21).
The misclassification appears to be caused by the trajectory
of the feature-vector as it makes the transition between the
two textures. During the transition between the two outer-
most textures, the vector appears to travel through a region
in feature space that is assigned to the third texture (the
texture at the center of the image). Finally, morphological
postprocessing is applied to Fig. 3(b), resulting in the final
segmented image i, (z,y) shown in Fig. 3(c). The mixture-
density classifier was not altered in Figs. 3(b) and (c), so
that only the effect of adding morphological postprocessing
is observed. Comparing Fig. 3(b) and (c), the misclassified
pixels at the texture boundary are mitigated by morpho-
logical postprocessing.
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