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ABSTRACT

Gabor filters have been applied successfully to the seg-
mentation of textured images. Previous investigators
have used banks of Gabor filters, where the filter pa-
rameters were predetermined ad hoc and not necessar-
ily optimized for a particular task. Other investigators
have proposed using filters tuned to dominant compo-
nents in the FFT of constituent textures. More recent
work presented a Gabor filter design method using a
Rician distribution to characterize the filtered textures.
The present work addresses the design of a single Ga-
bor filter to segment multiple textures and is based on
using the Rician distribution at two different scales of
the Gabor-filter envelope. Furthermore, variable de-
grees of postfiltering and the accompanying effect on
postfilter output statistics are considered.

1. INTRODUCTION

1 Texture segmentation is the process of partitioning
an image into regions of different texture. Gabor filters
have been employed successfully in filter-based texture-
segmentation schemes because (1) they provide optimal
joint resolution in the space and spatial-frequency do-
mains, and (2) they are bandpass filters, conforming
well to the human visual system [1, 2]. Previous in-
vestigators employed banks of Gabor filters for tex-
ture segmentation [3, 4]. The configurations of Ga-
bor filters making up the filter-banks were predeter-
mined ad hoc, however, and were not optimized for a
given application. Other researchers have proposed fil-
ter bank schemes based on a large number of bandpass
filters similar to the Gabor filter: difference of offset
Gaussians [5], prolate spheroid functions [6], wavelet
transform [7], and subband decomposition [8]. These
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schemes also used predetermined fixed filters or fil-
ters with available bandwidths dependent on center fre-
quency.

Recent work has focused on designing one or a few
Gabor filters for a particular application in an effort
to reduce the computional burden and to improve the
segmentation performance [2, 9–11]. Bovik et al. pro-
posed designing Gabor filters that focused on the dom-
inant spatial-frequency components in the FFT of con-
stituent textures. More recently, optimal methods for
designing a single Gabor filter have been developed for
the two-texture segmentation problem [10, 11]. These
methods search for the Gabor filter minimizing the
image-segmentation error by modelling the output sta-
tistics of a Gabor-filtered texture with a Rician dis-
tribution. Two major issues still remain: (1) how to
design a single Gabor filter optimally for the multi-
texture case; and (2) how to design multiple Gabor
filters optimally.

This paper presents a method for designing a Gabor
filter for the multi-texture case (issue 1) and can lead
to the design of multiple Gabor filters (issue 2). The
single-filter multi-texture design problem with variable
postfiltering has not been addressed by previous inves-
tigators. The present method employs a Rician Gabor-
filter output model at multiple scales to generate esti-
mates of candidate filter output statistics and associ-
ated texture-segmentation error. The predicted seg-
mentation error is then used to design the optimal Ga-
bor filter. Multiple filters may be necessary to han-
dle complex multi-texture segmentation problems. The
proposed approach to the single-filter design problem
leads to the design of multiple Gabor filters, because
the output statistics for all textures are estimated for
an exhaustive set of candidate filters.

2. PROBLEM OVERVIEW

The image processing under consideration is shown in
Fig. 1 and is similar to the scheme for two textures
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used in [11]. The technique outlined in the figure has
been justified for texture segmentation by previous in-
vestigators [9,12]. We now review the image-processing
scheme and define the texture-segmentation problem.

The input image i(x, y) is assumed to be composed
of two or more textures. First, the input i(x, y) is fil-
tered using a bandpass Gabor prefilter with impulse
response h(x, y):

h(x, y) = g(x, y) e−j2π(Ux+V y) (1)

where

g(x, y) =
1

2πσ2
g

e
− (x2+y2)

2σ2
g , (2)

and g(x, y) is assumed to be circularly symmetric for
simplicity. The Gabor prefilter function h(x, y), re-
ferred to as a Gabor function, is a complex sinusoid
at frequency (U, V ) modulated by a Gaussian envelope
g(x, y) [2]. The spatial-frequency response H(u, v) of
the Gabor prefilter is:

H(u, v) = G(u− U, v − V ) (3)

where

G(u, v) = e−2π2σ2
g(u

2+v2) . (4)

The Gabor function is essentially a bandpass filter cen-
tered about frequency (U, V ), with bandwidth deter-
mined by σg. We will refer to (U, V ) as the center
frequency of the Gabor prefilter. The spatial extent,
or scale, of h(x, y) is also determined by σg. More pre-
cisely, σg determines the scale of the envelope ofh(x, y);
it does not scale the center frequency. Continuing the
description of Fig. 1, the Gabor prefilter output is:

ih(x, y) = h(x, y) ∗ ∗ i(x, y) (5)

where ∗∗ denotes two-dimensional convolution.
The magnitude of the prefiltered image is:

m(x, y) = |ih(x, y)| = | h(x, y) ∗ ∗ i(x, y) | (6)

where m(x, y) has been shown to have approximately
Rician statistics within the extent of each texture [10,
11]. A low-pass Gaussian postfilter gp(x, y) is then ap-
plied, yielding the postfiltered image:

mp(x, y) = m(x, y) ∗ ∗ gp(x, y) (7)

where

gp(x, y) =
1

2πσ2
p

e
− (x2+y2)

2σ2
p . (8)

It has been well established that the Gaussian postfilter
reduces the error in texture segmentation [9]. In partic-
ular, mp(x, y) has a smaller variance thanm(x, y), and,
therefore, lowers the texture-discrimination error [11].

As a final processing step, the segmented image
is(x, y) is generated by applying several thresholds to
the postfiltered image mp(x, y). More elaborate meth-
ods can be used to generate the segmented image from
the postfiltered image, but a simple threshold scheme
more directly illustrates the efficacy of our methods.

Given the system of Fig. 1, the goal is to design the
Gabor prefilter h(x, y) and Gaussian postfilter gp(x, y)
such that the resulting aggregate segmentation error
for all texture classes in mp(x, y) is minimized. Our
approach can be summarized as follows.
(1) Given samples of the textures of interest ti(x, y),
i = 1, . . . , N , estimate the associated Rician statistics
of m(x, y) for each texture, over a range of Gabor filter
center frequencies (U, V ) and scales σg .
(2) Estimate the approximately Gaussian-distributed
statistics of the postfilter outputmp(x, y) using the re-
sults generated in step 1; this gives a Gaussian dis-
tributed mp(x, y) for each ti.
(3) Compute a series of optimal thresholds that can be
applied to mp(x, y) and compute the associated seg-
mentation error assuming equal a priori probabilities.
(4) Select the Gabor prefilter, determined by (U, V, σg),
and Gaussian postfilter, determined by σp, that give
the lowest aggregate segmentation rate at an accept-
able resolution.

Additional detail follows.

3. FILTER DESIGN METHOD

Previous results have shown that the output statistics
of m(x, y) often are well modeled by a Rician pdf. This
suggests that the prefilter output ih(x, y) for texture
ti may be modeled as a dominant complex sinusoid
with amplitude Ai at spatial frequency (ui, vi) plus
noise [11,13] :

ihi(x, y) ≈ Ai e
j2π(ui x+vi y) + ni(x, y) (9)

where the subscript i indicates that this is the pre-
filter output model for texture ti(x, y). Now, consider
ihi(x, y) to be the prefiltered version of the following
input power spectrum of an ergodic process:

Si(u, v) ≈ A
2
i δ(u− ui, v − vi) +

ηi

4
(10)

where the impulse δ(·) in the power spectrum models
the dominant sinusoid within the filter passband, and
the remaining power in the passband is allocated to
ηi/4. We emphasize that this model is only valid within
the approximate passband of the prefilter, i.e., it is a
locally equivalent model in the spatial-frequency plane
for an input texture ti(x, y).
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Figure 1: Image processing block diagram.

Now, consider (10) convolved with:

|G(u, v)|2 = F {g(x, y) ∗ ∗ g(x, y)} (11)

where F {·} denotes the Fourier transform operator,
and g(x, y) is from (2). We obtain the following mea-
sure of prefilter output power as a function of prefilter
center frequency:

Pi(u, v, σg) ≈ |G(u, v)|2 ∗ ∗ Si(u, v)

≈ A2
i e
−4π2σ2

g [(u−ui)
2+(v−vi)

2] +
ηi

16πσ2
g

(12)

The first term above arises from the dominant sinu-
soid in the passband represented by the impulse in
(10). From Parseval’s theorem, Pi(u, v, σg) may be in-
terpreted as the total power of ihi(x, y) for a Gabor
prefilter with center frequency (u, v) and parameter σg.
Relation (12) can be efficiently implemented in a dis-
cretized form using the FFT. The discrete form then
gives Pi(u, v, σg) at a discrete set of center frequencies
(u, v) and a particular σg. The second term represents
the remaining output power of the Gabor prefilter and
gives the parameter Ni = ηi/(16πσ2

g) in the Rician pdf
pi(m) of m(x, y) for texture ti [10,11]:

pi(m) =
2m

Ni
e
−(

m2+A2
i

Ni
)
I0(

2mAi
Ni

) (13)

where m = m(x, y) for input texture ti(x, y), Ai is
the amplitude of the dominant sinusoid, Ni is the total
noise power, and I0(·) is the modified Bessel function of
the first kind with zero order. The Rician distribution
is completely determined by the values of Ai and Ni.

If we next consider Pi(u, v, σg) at two prefilter enve-
lope scales set by σgα and σgβ , we may solve for Ni and
Ai at the frequency (ui, vi) of the dominant sinusoid:

Pi(u, v, σgα) ≈ A
2
i +

ηi

16πσ2
gα

Pi(u, v, σgβ) ≈ A
2
i +

ηi

16πσ2
gβ

(14)

rearranging:

Ni(u, v, σgα) ≈
Pi(u, v, σgα) − Pi(u, v, σgβ)

[1− (
σgα
σgβ

)2]
(15)

and

A2
i (u, v, σgα) ≈ Pi(u, v, σgα) −Ni(u, v, σgα). (16)

As the prefilter center frequency diverges from (ui, vi),
the exponential term in (12) becomes less than 1, and
error can be introduced in (14), (15), and (16), par-
ticularly for ηi = 0. (Note that for Ai = 0 this error
does not arise.) Examination of (12), (15), and (16)
for ηi = 0 shows that as the exponential term in (12)
becomes less than 1, power is increasingly attributed
to Ni when in fact Ni should equal 0. The net effect
of this error, however, is beneficial in the overall algo-
rithm. The error induces a preference for the frequency
(ui, vi) of the local dominant sinusoid, since lower Ni
implies lower variance in mp(x, y). Hence, the follow-
ing equations are used to estimate Ni and Ai for all
(u, v):

Ni(u, v, σgα) ≈
Pi(u, v, σgα)− Pi(u, v, σgβ)

[1− (
σgα
σgβ

)2]
(17)

and

A2
i (u, v, σgα) ≈ Pi(u, v, σgα) −Ni(u, v, σgα) (18)

Since Ai and Ni determine the Rician pdf, means
µgi and variances s2gi of m(x, y) may be calculated di-
rectly for each sample texture ti(x, y). The postfilter
means µpi and variances s2pi for texture ti are derived
from the prefilter means and variances using the pa-
rameters σg and σp (with an increasingly Gaussian dis-
tribution for large

σp
σg

) :

µpi (u, v) = µgi(u, v)

s2pi (u, v) =
s2gi(u, v) σ

2
g

σ2
p

(19)

The foregoing procedure for estimating the postfilter
output means and variances is repeated for represen-
tative samples of all textures of interest. A series of
optimal segmentation thresholds are calculated based
on the assumption of a multi-modal Gaussian pdf and
equal a priori probabilities for the textures. Thresh-
olds are selected that minimize the total segmentation
error. Stated another way, thresholds are set such that
mp(x, y) is assigned to the texture whose probability
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density is largest for a given output level. Assuming
equal a priori probabilities for the N textures, the min-
imum segmentation error rate is achieved by deciding
texture ti when [14]:

pi(u, v,mp) > pj(u, v,mp) ; j 6= i, 1 ≤ i, j ≤ N (20)

where the estimated Gaussian pdf pi(u, v,mp) of the
postfiltered output mp(x, y) for texture ti(x, y) is:

pi(u, v,mp) =
1√

2πs2pi(u, v)
e
−

(mp−µpi (u,v))
2

2s2pi
(u,v) (21)

Using these thresholds, the segmentation error is
estimated for each candidate Gabor filter. The filter
giving the lowest segmentation error is selected.

4. RESULTS

Sample results are shown in Fig. 2 for a 256x256 image
composed of two Brodatz textures and a random tex-
ture [15]. The input image shown in Fig. 2a consists
of a central region of texture d77 embedded in a larger
region composed of texture d15 imposed on a back-
ground of uniformly distributed random noise. Three
256x256 samples of the textures were used to design
the Gabor prefilter. For illustration, single values of
σg and σp are considered. The magnitude of the op-
timal Gabor prefilter output m(x, y) is shown in Fig.
2b. The predicted and actual histograms for m(x, y)
are in Fig. 2c. Fig. 2d is the thresholded version of the
postfiltered outputmp(x, y). The predicted and actual
statistics for mp(x, y) are in Fig. 2e. Note that even
though the predicted and measured distributions may
differ, the thresholds are effective. Finally, Fig. 2f is a
plot of the predicted segmentation error as a function
of Gabor prefilter center frequency (U, V ) with a white
intensity indicating a segmentation error of 100%, and
black 0%. The prominent dark ring in Fig. 2f is due to
a lowpass filter operation on each of the original Bro-
datz images to eliminate high frequency artifacts [16].
The darkest point in the image corresponds to the pre-
filter center frequency for this example. Clearly, as we
see from Fig. 2d, the method produced a Gabor pre-
filter that gives good segmentation of a difficult image.
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