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ABSTRACT

This paper presents a method for the design of multiple
Gabor filters for segmenting multi-textured images. Al-
though design methods for a single Gabor filter have been
presented recently, the development of general multi-filter
multi-texture design methods largely remains an open prob-
lem. Previous multi-filter design approaches required one
filter per texture or were constrained to pairs of textures.
Other approaches employed ad hoc banks of Gabor filters
for texture segmentation, where the parameters of the con-
stituent filters were restricted to fixed values and were not
necessarily tuned for a specific texture-segmentation prob-
lem. The proposed method removes these restrictions on
the number of filters and the number of textures. This of-
fers the potential to improve the segmentation performance
or to reduce the number of filters. Further, the development
of the design method and mathematical models provide new
insight into the design of multiple Gabor filters for texture
segmentation. Results are presented that confirm the ef-
ficacy of our filter-design method and support underlying
mathematical models.

1. INTRODUCTION
1 The segmentation of textured images remains a difficult
problem in image processing. One successful approach to
texture segmentation employs Gabor filters [1–3]. The mo-
tivation for using these filters in texture segmentation is
discussed in the references [4, 5].

A central issue in applying Gabor filters to texture seg-
mentation is the determination of the filter parameters.
Past efforts have employed (1) a large bank of ad hoc se-
lected Gabor filters with predetermined parameters or (2)
a small set of Gabor filters with filter parameters designed
to solve a particular problem [6–10].

In approach (1), some segmentation tasks may not require
a bank of filters or may not tolerate the computational bur-
den imposed by a large filter bank. In approach (2), an
optimal method for designing multiple (≥ 2) Gabor filters
has not been reported for the general N -texture (N ≥ 2)
segmentation problem. In addition, previous approaches
have had limitations on the number of textures or on the
number of filters per texture [9, 10].
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This paper addresses the design of multiple Gabor filters
for segmenting multi-textured (≥ 2) images. The proposed
design procedure is a supervised method; i.e, we assume
that representative texture samples are given, as is often the
case in real segmentation problems [7, 9, 10]. We propose a
near-optimal method for the design of multiple Gabor fil-
ters to segment multiple textures. The scheme is based on
the development of an underlying mathematical model that
relates the texture power spectra, filter parameters, and seg-
mentation error [11]. The remainder of this paper outlines
the scheme and provides some representative results.

2. MULTI-FILTER SCHEME

The multichannnel scheme is shown in Fig. 1. We will refer
to a single cascade of a Gabor prefilter hj(x, y), magnitude
operator, and Gaussian postfilter gpj (x, y) as a filter chan-
nel. The multichannel architecture is essentially a repli-
cation of the single-filter architecture over the k channels.
However, the values of the filter parameters (uj , vj , σgj , σpj )
in each channel j are free to vary from channel to channel.

The input image i(x,y) is assumed to be composed of dis-
joint regions of N textures t1, t2, . . . , tN with N ≥2. First,
the input image i(x, y) is filtered using a bandpass Gabor
prefilter with impulse response hj(x, y), where the subscript
j denotes the particular channel in Fig. 1 and 1≤ j ≤ k:

hj(x, y) =
1

2πσ2
gj

e
−

(x2+y2)

2σ2
gj e−j2π(ujx+vjy) . (1)

The Gabor function hj(x, y) is a complex sinusoid centered
at frequency (uj , vj) and modulated by a Gaussian enve-
lope [10]. The parameter σgj determines the scale of the
envelope of hj(x,y). Thus, parameters (uj , vj , σgj ) com-
pletely determine the Gabor prefilter. For simplicity, we
also assume that the Gaussian envelope ofhj(x,y) is a sym-
metric function. The output of the prefilter stage ihj (x, y)
is the convolution of the input image with the filter response

ihj (x, y) = hj(x, y) ∗ ∗ i(x, y) (2)

where ∗∗ denotes convolution in two dimensions. In the
notation for ihj (x, y), the subscript hj indicates the output
of the Gabor prefilter hj(x, y) in the j th filter channel. The
magnitude of the output of the Gabor prefilter is computed
in the following stage as

mj(x, y) = |ihj (x,y)| = | hj(x, y) ∗ ∗ i(x, y) |, (3)

where mj(x,y) has been shown to have approximately
Rician statistics for filtered textures [6, 7]. A low-pass
Gaussian postfilter gpj (x, y) is applied to prefilter output
mj(x, y) yielding the postfiltered image

mpj (x, y) = mj(x, y) ∗ ∗ gpj (x, y) (4)
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Figure 1. Multichannel scheme for segmenting a textured image.

with

gpj (x, y) =
1

2πσ2
pj

e
−

(x2+y2)

2σ2
pj (5)

and where the postfilter parameter σpj determines the
Gaussian postfilter in the j th channel. Generally, we will
refer to ihj (x,y) as the prefiltered image, mj(x,y) as the
prefilter output, and mpj (x, y) as the postfilter output .

A vector classifier generates the classified image c(x, y)
based on the vector output of the k postfilters. A Bayesian
classifier based on predicted multivariate output statistics
is used. Finally, provision is made for postclassification pro-
cessing to address transient effects at boundaries between
different textures. The result of the additional postprocess-
ing of the classified image c(x, y) gives the final segmented
image is(x,y).

3. DESIGN METHOD

Below, we describe portions of the underlying statistical
models. Next, we describe an error measure that is used
as the basis for the multi-filter design. The filter-design
method is then outlined. Finally, the postprocessing is de-
scribed.

3.1. Statistical Model

In previous research on the design of single filters, we pre-
sented a Gaussian statistical model for the postfiltered out-
put mpj (x, y) [7]. The success of this statistical model in
predicting single-filter texture segmentation error and in de-
veloping single-filter algorithms leads us to consider a mul-
tivariate Gaussian model for the vector output statistics of
a set of k filter channels.

Following the single-filter development in [7], the enve-
lope mj(x, y) of the prefiltered image has a Rician distri-
bution. The postfiltering operation in each of the k filter
channels performs a spatial average of the prefilter output
mj(x, y), leading to Gaussian distributions for the postfil-
ter outputs mpj (x, y). The multivariate Gaussian pdf of the
filter-channel outputs for input texture ti is then

pi(mp) =

1

(2π)k/2|Ci |1/2
e−(

(mp−µi)TCi
−1

(mp−µi)
2

) (6)

wheremp is a vector sample of the k-dimensional postfilter-
output vector, µi is the mean postfilter-output vector, Ci
is the covariance matrix of the postfilter outputs. The pa-
rameters of each filter channel j are θj = (uj , vj , σgj , σpj )
corresponding to prefilter hj(x,y) and postfilter gpj (x,y) in
Fig. 1.

The components µij of mean vector µi can be deter-
mined for each texture ti and each filter channel j using
the single-filter methods of [7]. The covariance matrix Ci
presents greater difficulty, since it implies a need for sam-
ples of the postfilter output for all candidate filters. How-
ever, the single-filter methods of [7] do yield the diagonal
elements of the covariance matrix and these correspond to
the variances s2

pij of individual channels in [7]. Thus, we

propose using the values of s2
pij along the diagonal of Ci

with all off-diagonal elements equal to zero. To reduce the
likelihood of having strongly correlated features, the can-
didate filters are restricted such that the spatial-frequency
responses of any of the constituent filters do not overlap
significantly.

3.2. Segmentation Error Measure

The previous section established a multivariate Gaussian
statistical model for the vector output of k filter channels.
This suggests that the Bhattacharyya distance is an appro-
priate measure of feature performance [12]. Consider two
textures tα(x, y) and tβ(x, y). The Bhattacharyya distance
B(tα, tβ), or B-distance, between the two textures is

B(tα, tβ) =
1

8
(µα − µβ)T

[
Cα +Cβ

2

]−1

(µα −µβ)

2



+
1

2
ln

(∣∣ 1
2

(Cα +Cβ)
∣∣

|Cα|1/2|Cβ|1/2

)
(7)

where µα and µβ are the mean vectors, and Cα and Cβ
are the covariance matrices associated with the two tex-
tures. The B-distance provides an upper bound for the
classification error Ec of the two textures. A similar upper
error bound forN multivariate Gaussian classes is [13,14]

Ec <

N−1∑
α=1

N∑
β=α+1

(PαPβ)1/2ραβ with ραβ = e−B(tα,tβ) (8)

where ραβ are the two-class Bhattacharyya coefficients.
Equations (7) and (8) provide the relationship between the
segmentation error and the multivariate Gaussian statistics
of the vector output of the k filter channels. As in the sin-
gle filter case, the a priori probabilities Pα are taken to be
equal.

In practice, the error measure in (8) is effective for mul-
tichannel filter design when the number of textures is small
(< 4). However, the performance of the designed filters de-
teriorates rapidly as the number of textures increases. This
deterioration is apparently caused by an overstatement of
error in (8) as a larger number of textures crowd the feature
space. To mitigate this problem, equation (8) is modified:

Ec <
1

N − 1

N−1∑
α=1

N∑
β=α+1

(PαPβ)1/2ραβ ≤
1

2
(9)

where the worst case upper bound on Ec becomes 1
2
.

The Bhattacharyya error Ec provides a measure for
the accurate classification of texture within regions but
does not directly address the problem of accurate local-
ization of boundaries between regions. Since the texture-
segmentation task involves the separation of an image into
regions of differing texture, inaccuracies in boundary loca-
tions will necessarily contribute to the overall segmentation
error. The critical function of the localization-error mea-
sure is to generate an error term that favors smaller spa-
tial filter responses. To develop a simple and effective error
measure, the problem is broken into two parts. First, a sim-
ple localization-error measure is proposed based on error in
corners of rectangular regions. Then, the localization error
at other types of region boundaries, or edges, is reduced
by modifying the Bayesian decision surfaces. Alternatively,
we have also been investigating methods such as relaxation
labeling to reduce localization error near boundaries [11].

The total error measure Et for filter selection is then the
sum of the classification error Ec and the localization error
El:

Et = Ec + El

=
1

N − 1

N−1∑
α=1

N∑
β=α+1

(PαPβ)1/2 e−B(tα,tβ)

+
1

k

k∑
γ=1

2(N )(σ2
gγ + σ2

pγ)

N2
(10)

where the image dimensions areN×N and the term (σ2
gγ+

σ2
pγ) approximates the combined localization effects of the

Gabor prefilter and Gaussian postfilter. The total error Et
is then used as the basis for designing the Gabor filters in
the multichannel design.

3.3. Multichannel Design Algorithm

Drawing upon the single-filter design ideas [7], the multi-
channel design algoithm is described below. Refer to [11]
for further detail.

1. Construct a large set of single candidate Gabor pre-
filters. A typical range of prefilter parameters would
be σg ∈ {2, 4, 8, 16}, with candidate filter center fre-
quencies spaced in proportion to filter bandwidths.
This provides coverage of the frequency plane at each
value of σg. Typical postfilter parameters would be
σp = 2σg.
2. Efficiently compute the Gaussian statistics asso-
ciated with each postfiltered output texture for each
candidate filter using single-filter methods [7].
3. Design the first filter by selecting the single filter
with the smallest error Et from the candidate filter set.
Select subsequent filters using a forward sequential fil-
ter selection and the vector error measure Et [14].

3.4. Postprocessing
In practice, we have seen that a Bayesian vector clas-
sifier performs well within regions but poorly at bound-
aries [11]. We also have observed that localization error at
these boundaries between regions is reduced by modifying
the Bayesian classifier using a mixture density. This mix-
ture density approach has the advantage that it is readily
applied to the case of multivariate-Gaussian classes. The
procedure is to first select the largest variances s2

pij along
each feature axis, or filter output. Then, form a mixture
covariance matrix Cmax, whose diagonal elements are the
maximum variances for each feature axis. The multivariate
form of the mixture distribution pi mix is then

pimix(mp) =
1

2
(pi(mp,Cmax) + pi(mp,C)) , (11)

where pi(mp,C) is the original multivariate Gaussian pdf
and pi(mp,Cmax) is the multivariate Gaussian formed by
taking the maximum diagonal elements of all the covariance
matrices for the textures.

Another problem observed in practice is the appearance
of narrow regions at the boundary between two textures
that are misclassified as a third texture. These narrow mis-
classified regions appear to be caused by the trajectory of
the feature vector as it makes the transition through feature
space at the boundary. A two-step operation is used to re-
move these narrow misclassified regions. First, pixels whose
neighborhood consists entirely of one texture class are left
unchanged; otherwise, the pixel value is set to zero to indi-
cate it is no longer assigned to any class. Then, the classi-
fied regions are propagated back into the unassigned regions
based on the most common class within 8-neighborhoods.

Finally, alternative postprocessing approaches such as re-
laxation methods are the topic of ongoing research [11].
However, the present postprocessing methods serve to illus-
trate the effectiveness of the designed filters in a complete
system.

4. RESULTS

Sample results using the new multichannel filter design al-
gorithm, along with the proposed postprocessing, are shown
in Figs. 2 and 3. The “Nat-5” image shown in Fig. 2 is com-
posed of samples from the Brodatz texture album and has
been used by previous investigators to test texture segmen-
tation methods [1, 2, 15]. Fig. 3 shows the final segmented
image using only four Gabor filters designed with the pro-
posed method and the foregoing postprocessing. Jain and
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Figure 2. Input composite image “Nat-5”, clock-
wise from top left: d77 “cotton canvas,” d55 “straw
matting,” d17 “herringbone weave,” d84 “raffia,”
d24 “pressed calf leather” in center.

Figure 3. Segmented image using four filter chan-
nels, error=0.05.

Farrokhnia obtained similar segmentation results using 13
filters selected from a predetermined filter bank of 20 fil-
ters [1]. Randen and Husøy also achieved similar results
using a subband-based approach using 13 to 40 filters [2].
Further results are presented in [11] that show similarly
effective segmentations for combinations of three to eight
textures. These results also show a tendency for increased
segmentation error as the number of textures increases, and
a tendency for decreased segmentation error as the number

of filter channels increases.
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