
 

 

ABSTRACT 

 

The imaging of buried land mines continues to present 

significant signal-processing challenges in the development 

of inverse methods for the detection of plastic mines buried 

in soil.  To address this difficult problem, recent 

mathematical advances in the development of the Elliptic 

Systems Method are used to generate images of the buried 

land mines.  The proposed approach adapts earlier methods, 

successfully applied in laser tomography of breast tumors 

using the diffusion equation, to the present problem of land 

mine imaging using the Helmholtz equation.   The images 

generated by the new method represent electromagnetic 

properties of underground regions, providing effective 

differentiation of plastic land mines from surrounding soil.  

Experimental results are presented to demonstrate the new 

method. 

 

 

 

1 INTRODUCTION 

 

The imaging of buried land mines presents significant 

challenges in the development of effective signal-

processing methods for solving the inverse problem posed 

by measured ground-penetrating radar returns from plastic 

mines.   A successful practical solution of this difficult 

problem requires a significant technological advance, rather 

than marginal improvements.  To this end, a novel signal-

processing approach is proposed where the ground-

penetrating radar system is designed to take advantage of 

the latest mathematical advances in inverse problems, rather 

than working around limitations of current radar 

technology[1-3]. These novel mathematical advances 

enable direct characterization of the electromagnetic 

properties of the soil (relative dielectric constant and 

conductivity) from the radar signals. 

 

In our previous publications, we developed a new approach 

for the solution of the integro-differential formulation of the 

inverse problem for the diffusion equation by using a 

Galerkin-like method. This novel inverse method has been 

used to solve similar challenging problems in laser 

tomography [4,5]. More recently, the authors have been 

investigating adaptation of these earlier successes to 

imaging underground land mines, which are characterized 

by a Helmholtz equation [3].  

 

Usually the solution of a linearized inverse problem for the 

Helmholtz equation is based on the Born or Ryutov 

approximation as in [7,8].  Other methods which avoid the 

Born or Ryutov approximation can be divided into two 

classes: iterative algorithms based on the integral 

formulation of inverse problem, or optimization approaches 

[see 9,10,11,12,13].  Both of these types of methods are 

time consuming because of the huge conditional number of 

resulting system, even for a very small number of grid 

points.  Thus, the convergence of these methods becomes 

too slow, except when one assumes a very simple form for 

the target (i.e., a cylindrical target in [6]) and can construct 

an analytic approximation formula for the solution of the 

scattering problem. In these simple cases, the number of 

independent parameters in optimization procedure is very 

small, but such algorithms can not accurately handle targets 

of complex geometry.  

 

In this paper we present a novel approach for the solution of 

the scattering problem. In this approach, we use an integro-

differential form rather than the conventional integral form 

of the resulting system requiring solution of the 

overdetermined discretized system at each frequency. The 

normal equation approach for the solution of such a system 

leads to the solution of a large, sparse, positive-definite, 

Hermitian matrix system, rather than the conventional full 

and ill-conditioned matrix system. This allows us to use an 

efficient preconditioned technique for the solution of this 

system.   

 

This new method provides fast and accurate solution of the 

inverse problem. Both the location and electromagnetic 

characteristics of targets of interest are accurately 

determined. An important feature of these methods, for 

practical purposes, is their rapid convergence for both the 

forward and inverse problems.  In the following, the 

forward method is first described, followed by discussion of 

new integro-differential approach for the solution of the 

inverse problem.  Experimental results demonstrating the 

efficacy of the new method are given. 
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2 FORWARD METHOD 

 

The development of new methods for solving inverse 

problems frequently requires the rapid solution of the 

forward problem for the Hlemholtz equation to generate test 

data for evaluating the inverse methods.   In earlier work, 

Gryazin et al. [2] presented a novel forward method that 

provides fast and accurate solution of the forward problem 

for land mine detection. In this new method, the GMRES 

(Generalized Minimum Residual) approach is improved by 

using a carefully chosen preconditioner.  This new method 

overcomes computational difficulties that arise due to the 

large number of grid points necessary in solving the 

Helmholtz equations for the land mine problem at high 

frequencies.  A brief summary of the method is given 

below, and further details are found in [2].   

 

The boundary value problem is governed by the Helmholtz 

equation with Sommerfeld-like boundary conditions 

Where γ(x,y) is the propagation constant as a function of 

(x,y) coordinates and E is the scattered electric field.   The 

source is presumed to lie well inside the spatial region Ω 

where the solution is computed.   The boundary conditions 

allow reducing the reflection of waves back into the region 

Ω. The problem is then discretized using second order finite 

difference equations to compute the solution on a regular 

mesh of points in Ω.  The resulting matrix describing the 

system of equations has a block tridiagonal structure but is 

neither positive definite nor Hermitian.  Thus, most iterative 

methods of solution diverge or converge too slowly for the 

large number of mesh points required at high frequencies.   

 

We address these computational difficulties using the 

GMRES method with a preconditioner using Somerfield 

boundary conditions at the upper and lower y-axis 

boundaries and Neuman boundary conditions at the left and 

right x-axis boundaries, as well as homogenious 

background.  This results in a fast and accurate algorithm 

for computing the solution of the Helmholtz equation using 

fast transform algorithms for the inversion of the 

preconditioner.  The effect of using Sommerfeld-like 

boundary conditions rather than radiation boundary 

conditions at  infinity is minimized by increasing the size of 

Ω until the solution well within Ω is independent of the size 

of Ω.  This approach works particularly well when the 

attenuation characteristics of the soil are high, leading to 

low values of the electric field at the boundaries.  

 

This system is then solved using GMRES and the 

aforementioned preconditioner and boundary conditions.  

Further details of this new method can be found in Gryazin 

et al. [2].  The result is the perturbation in the electric field 

E caused by the presence of a target. 
 

3 INVERSE METHOD 

 

To solve the inverse problem, a second-generation version 

of the Elliptic Systems Method (ESM) has been developed. 

The ESM was initially proposed for inverse problems for 

time-dependent diffusion PDEs (partial differential 

equations), with applications to, among others, optical 

medical imaging [6]. More recently, a second-generation 

version of the ESM has been developed, where the resulting 

integro-differential PDE is solved directly, rather than using 

a Galerkin-like approach, as was the case in the first version 

of ESM. Thus, we approximate the solution of this PDE in 

its original form, rather than through its first few power 

moments. The main idea behind this algorithm is to use an 

integro-differential form rather than the conventional 

integral form of the resulting equation, which expresses 

inverse problem. This integro-differential form leads to the 

solution of a large, sparse, positive-definite, Hermitian 

matrix system, rather than the conventional full and ill-

conditioned matrix system. This allows us to use an 

efficient preconditioning technique for the solution of this 

system.  

 

The first step of this imaging algorithm is to derive and 

reformulate a linearized inverse problem as a boundary 

value problem for a Volterra-type integro-differential 

equation of the second order. The integration in this 

equation is carried out with respect to frequency. The 

highest value of the frequency in the available frequency 

band is a quite natural regularization parameter. Therefore, 

the regularization in this case represents a natural procedure 

of cutting off high frequencies, which are not available 

from measurements. Moreover, Volterra-type integral 

equations are essentially "initial value" problems and we 

can use efficient "marching" numerical procedures for the 

solution of such an equation. A difficulty here is that, we 

don't know the initial distribution of the function at the 

highest frequency. So to guarantee the uniqueness of such a 

problem, we need to add a second boundary condition at 

least over part of the boundary. This leads to an 

overdetermined boundary-value problem for a Volterra-

type integro-differential equation of the second order. The 

overdetermination is due to the presence of both Dirichlet 

and Neumann boundary conditions, rather than only one on 

the surface part of the boundary. 

 

We then approximate this equation by using a second order 

central finite-difference scheme for the differential part of 

the operator and a simple trapezoidal rule for the integral 

part of this equation. The resulting discretized system is 

overdetermined. To solve it at each step of the marching 

algorithm (viz. at each frequency), we use the normal 

equations method.  Because of the large computational 

costs and memory requirements for the direct solution of 

such problems, iterative methods are preferred. Unlike a 

discretization of the original second order problem, the 

normal equation approach produces a positive definite 

Hermitian system; we use the preconditioned conjugate 

gradient method for the solution of this system.  
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However, a central issue in these approaches is the selection 

of a preconditioner. In [14], Manteuffel et al. show that, to 

be effective, the preconditioner for conjugate gradient 

method should use the same boundary conditions as the 

original operator. We have chosen to use as a 

preconditioner the exact factorization of the original matrix 

using the method of nested dissection, but for only a small 

number of the frequencies. We have found that this 

selection works well for nearby frequencies where it is an 

excellent approximate inverse. In this approach we have 

developed an automatic algorithm for the near optimal 

choice of frequency ranges, over which we use the same 

preconditioner. The number of iterations of the conjugate 

gradient method is usually less than 5 or 6 for all 

frequencies from the considered interval (from .5GHz to 

3GHz). Because the factorized matrix does not depend on 

the solution of inverse problem, factorization could be 

effectively parallelized, but this expansion of the presented 

algorithm is outside the scope of this paper. 

  

In our numerical experiments we take wet soil with 5% 

moisture as a background medium. We introduce 

multiplicative 10% Gaussian noise in the data at the 

surface.  The mathematical expectation of this noise is zero. 

Figure 1 displays the original, noisy and smooth data at the 

surface just above the target, as a function of frequency. 

The solid, represents the "exact" value of this function 

obtained through the solution of the forward problem. Stars 

represent noisy data. Circles show result of the above 

smoothing procedure through splines. Figures 3 and 4 show 

results for the scenario illustrated in Fig. 2.  The image of 

Fig. 3 shows the physical model of a plastic land mine 

buried in soil. The image in Fig. 4 shows the recovered 

image using the presented algorithm on a forward data set 

generated using preconditioned GMRES.  In the figure, 

varying shades of gray in the reconstructed image represent 

different material characteristics (conductivity and 

dielectric constant).   

 

Numerical experiments for TNT-filled mine-like targets, 

given in Fig. 4, show that locations, sizes, and real parts of  

f(x,y,E0) within targets are imaged with good accuracy. 

Somewhat lower quality images of Im[f(x,y,E0)] in recent 

experiments may be improved by introduction of Newton-

like updates in order to take into account a non-linear 

dependence of the function E from the perturbation term 

f(x,y,E0).  
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Figure 1. The original, noisy, and smoothed data at the 

surface just above the target, as a function of frequency. 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Illustration of scenario under consideration with 

plastic land mine target buried in the soil and incident 

ground-penetrating radar signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  

 

Figure 3.  Model of two plastic land mines buried in soil.    

 

 

 

 

 

 

 

 

 

 

Figure 4.  Recovered image using the proposed inverse 

method. 
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