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ABSTRACT

Separating halftones from text is an important step in
document analysis. We present an algorithm that ac-
curately extracts halftones from other information in
printed documents. We treat halftone extraction as
a texture-segmentation problem. We show that com-
monly used halftones, consisting of a pattern of dots,
can be viewed as a texture. This texture exhibits a
distinct spectral component that can be detected us-
ing a properly-tuned Gabor filter. The Gabor filter
essentially transforms halftones into high-contrast re-
gions that can be isolated by thresholding. We propose
a filter-design procedure and provide experimental re-
sults.

1. INTRODUCTION

To reproduce photographs and other grayscale images,
a pattern of dots called a halftone is used to simu-
late shades of gray [1]. When documents are processed
electronically, it is important to be able to separate
halftones from text, since they typically have different
processing requirements. In this paper, we describe a
method for extracting halftones from documents. We
show that halftones, because of their distinctive dot
pattern, can be viewed as textures. It has been shown
that textures can be segmented based on spectral dif-
ferences by using bandpass filters (e.g., Gabor) [2, 3,
4, 5, 6, 7]. This suggests that bandpass filters can
be used to isolate regions containing halftones. Other
researchers have employed spectral techniques in docu-
ment analysis. Jain and Bhattacharjee [8] used a bank
of 28 Gabor filters to segment text from illustrations
by treating lines of text as a texture. Randen and
Husgy [9] adopted a similar, but more efficient, ap-
proach using perfect reconstruction filters. In these
previous works, the authors focused on the textural
properties of the text. In contrast, we concentrate on
the textural characteristics of halftones. Although tex-
tures produced by the halftone process are not visible to

Thomas P. Weldon

Dept. of Electrical Engineering
Univ. of North Carolina at Charlotte
Charlotte, NC 28223

email: tpweldon@uncc.edu

William E. Higgins

Dept. of Electrical Engineering
The Pennsylvania State University
University Park, PA 16802

email: weh@ruth.ece.psu.edu

the naked eye, these textures produce spectral charac-
teristics that differ significantly from other information
in the document. More importantly, halftones derived
from different images (but produced using the same
halftone screen) are effectively samples of the same tez-
ture, even though visually they appear quite different.
Consequently, all halftones in any given document have
similar spectral characteristics, and therefore a single
Gabor filter can be used to segment halftones from
printed documents. Our approach is simpler and pro-
duces more accurate segmentations (based on a visual
comparison of results) than the Texture Co-occurrence
Spectrum approach of Payne et al. [10] (although their
approach addresses the more general problem of region
classification).

2. SPECTRAL PROPERTIES OF
HALFTONES

The subsequent analysis describes the spectral com-
position of an image when represented as a halftone.
We show that the halftone dot pattern can introduce a
high-frequency carrier that is essentially modulated by
the baseband of the input image. The baseband signal
corresponds to the grayscale variations in the original
photograph. This effectively causes low-frequency phe-
nomena in the original photograph to appear at much
higher frequencies in the halftone. In particular, the
spectral characteristics near DC appear to be repli-
cated at multiples of the halftone dot frequency. For
simplicity, we restrict our analysis to 1D cross-sections
(signals) of 2D images, which allows us to perform the
analysis in 1D. Section 4 provides experimental evi-
dence suggesting that these principles also apply to 2D
images.

We begin with an analytical expression for the half-
tone process derived by Kermish and Roetling [11]:

h(z) = s(z) + % Z nt sin(mns(z)) cos(nwoz) (1)

where h(z) is the halftone signal, s(#) is the baseband



signal, and wy is the halftone dot frequency (the car-
rier). When contrast is limited, the spectrum of the
halftone signal can be approximated by the spectrum
of the original signal replicated at integer multiples of
the halftone frequency. We expand the sine function in
(1) as a Taylor series.

h(z) = s(x) + % Z n~tz(x;n)cos(nwox)  (2)

where

z(x;n) = nws(z) — (nﬂ':;('x)) + (mr:;(lx)) — (3)

Note that since —1 < z(x;n) < 1,Vn, the quantity
z(x;n)/nin (2) decays as 1/n. We approximate (2) by
considering only the first two terms in the summation
in (2), and assume that the contrast is sufficiently low

such that |2ws(z)| < 1. This gives
h(z) = s(x) + 2s(x) cos(wox) + 2s(x) cos(2woz)  (4)

From modulation theory, the spectrum of (4) is just
the spectrum of s(x) centered at DC plus the same
spectrum at +wg and at +2wq (appropriately scaled).
Although contrast is seldom small enough to justify
the assumption above, the result supports the notion
of spectral replicas mentioned previously. Recall that
our main concern is to isolate the halftone from the
text. To do this, all we need to know are the basic
characteristics of the halftone spectrum. Thus, an ac-
curate approximation to h(x) is not required.

The previous analysis suggests that spectral replicas
can also occur in halftones of 2D images; i.e., approxi-
mate copies of the image spectra can occur at multiples
of the halftone dot frequency. Note that for a page con-
taining both text and images represented as halftones,
the spectrum near DC will be a composite of text and
image information. At multiples of the halftone dot
frequency, though, the spectrum will consist primarily
of image data associated with the halftones. Thus, a
bandpass filter, tuned to the halftone dot frequency,
can be used to extract the halftones. This is the foun-
dation of our approach.

3. AN ALGORITHM FOR EXTRACTING
HALFTONES

Although our approach to extracting halftones was pre-
sented using spectral arguments, halftone-extraction
can also be viewed as a texture-segmentation prob-
lem. Since halftones consist of dots on a fixed lattice,
halftones can be considered a strongly-ordered texture,
based on Rao’s taxonomy [12]. Strongly ordered tex-
tures are characterized by a regular pattern of geo-
metric primitives called texels. In halftones, the texels
correspond to the halftone dots that vary in diameter.

Although the dot pattern is not visible to the naked
eye, halftones exhibit all the properties characteristic
of textures, just at a smaller scale.

Dunn and Higgins [6, 7] analyzed strongly-ordered
textures in detail and showed how Gabor filters can be
used for texture segmentation. By viewing halftones as
textures, we can apply these same principles to isolate
halftones. In particular, since the halftone dot spacing
is typically the same for all halftones in a given docu-
ment, the halftones are effectively instances of the same
texture. Thus, a single Gabor filter is sufficient to iso-
late them. Below, we develop an algorithm for select-
ing an appropriate filter and demonstrate how the filter
output can be used to segment halftones from other in-
formation in printed documents. We begin with a brief
discussion of Gabor filters [6, 7], followed by a summary
of the algorithm.

We define a Gabor filter Oy, as:

. A,
m(xz,y) = Op(i(z,y)) = li(z,y) * h(z,y)|  (5)
where ¢ is an image, m is the output, and h(z,y) is a
Gabor elementary function (GEF) [13]. H(w,v), the
frequency-domain representation of a GEF, is given by

H(u,v) = exp {—%UZ((U SO 4 (- v>2)} (6)

where o characterizes the bandwidth of the filter, (u, v)
denote frequency-domain rectilinear coordinates, and
(U, V) represents a particular 2D frequency [3, 6, 14].
The 2D frequency can also be expressed in polar coor-

dinates as a radial frequency F = +/U? + V2 and angle

o = tan=1(V/U). The GEF’s frequency response has
the shape of a Gaussian, centered about the frequency
(U, V). Thus, the GEF acts as a bandpass filter. Con-
volving an image with a GEF results in an output that
is complex. The magnitude operation in (5) converts
the complex output to a real-valued output and has
other useful properties [6].

Our algorithm for extracting halftones begins with
the initialization of a few constants. These constants
are fixed for any given document or series of documents
and can be determined off-line. First, we select one
sample halftone and determine the halftone dot fre-
quency (simply by counting the dots per inch under
magnification). Only one example is needed since doc-
uments typically use the same screen for all halftones.
The dot frequency determines the radial frequency F
of the filter (taking into account any frequency folding
due to low digitizer sampling rates). Next, we estab-
lish both the spatial extent and bandwidth of the filter
by specifying the single parameter o. Finally, we spec-
ify a segmentation threshold 7" as a percentage of the
filter-output range. As we will see, performance is rel-
atively insensitive to ¢ and 7. Then, for each page in
the document, the following steps are performed:



1. Digitize the page and compute its discrete Fourier
transform.

2. Find the point of maximum energy in an annular
region with radius equal to the Gabor-filter radial
frequency F. This determines the angle ¢, and
completes the filter design.

3. Apply the filter to the page and threshold the
filter output.

4. RESULTS

Fig. lais a clip from a popular journal [6] containing
both text and a halftone illustration. Fig. 1b shows
its Fourier spectrum. Note the four bright spots (cir-
cled for clarity) representing the halftone dot frequency.
Applying a Gabor filter tuned to the halftone dot fre-
quency produces the filter output shown in Fig. lc.
Note how much of the baseband signal is recovered by
the single filter. This supports the notion of spectral
replicas suggested in the 1D analysis. To segment the
image, we simply threshold the filter output. The re-
sult after thresholding i1s shown in Fig. 1d. Note that
thresholding produces a very good segmentation ex-
cept where the original image is very dark. This can
be expected, since as the grayscale approaches black,
the dot size increases to the point where the individ-
ual dots become indistinguishable. In the limit, the
local spectrum approaches DC. To illustrate the accu-
racy of the segmentation, we computed the minimum-
area rectangular bounding box that includes all points
above the threshold. The minimum is computed over
all orientations between -45 to +45 degrees to account
for possible image rotations. The result is shown in
Fig. 1a, where the bounding box (shown in black) is
superimposed over the original input image. Fig. 2a
shows an example of a rotated image, with the bound-
ing box superimposed.

Implementing our method is straightforward, re-
quiring only four easily determined parameters: the
filter center frequency, defined by F' and ¢, the filter
extent/bandwidth o, and the threshold T'. The choice
of filter center frequency is critical to performance, but
since the halftone dot frequency is always significantly
above the baseband (otherwise it would be visible to
the eye), it is conspicuous. In contrast, our algorithm is
insensitive to bandwidth and threshold. A large band-
width (small o) is desirable because the corresponding
filter has a small spatial extent (more spatial resolu-
tion). If o is too small, though, sampling the filter itself
can cause aliasing. We used ¢ = 4 pixels for all exam-
ples. Segmentation results, however, were largely unaf-
fected by differences in bandwidth. Regarding thresh-
old sensitivity, we achieved similar segmentations for
thresholds spanning 25% of the output range. For ex-
ample, the segmentation in Fig. 1la was produced using

a threshold 7" = 64 out of 255. Using a threshold of 128
produced a bounding box approximately 3% smaller.
Another example is shown in Fig. 2b, with the
bounding box shown in white. This image was also

used by [8] and [9] and is provided for comparison.
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Figure 1: Halftone from [6; pp.
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149]: (a) Input image with minimum-area bounding box superimposed in black; (b)

Fourier transform magnitude plot (FFT log-magnitude) of the original image, digitized at 300 dpi. Spectral components
of the halftone carrier are circled; (¢) Output from a properly tuned Gabor filter. o = 4 pixels, F' = 0.4078 cycles/pixel,
¢ = 51.62°; (d) Result from thresholding the filter output at 25% (graylevel 64 out of 255).
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Figure 2: (a) Rotated version of the halftone in Fig. 1 with bounding box superimposed in black. Threshold = 64. Parameters
the same as in Fig. 1. (b) “Gazdik” halftone from Jain and Bhattacharjee [8] with permission. Computed bounding box in
white. Threshold = 64. Gabor filter parameters: o = 4 pixels, F' = 0.561 cycles/pixel, ¢ = 45°.



