
i

MIXED SIGNAL FAULT SIMULATOR:
COMPARISONS OF HARDWARE AND SIMULATION RESULTS

By

Aaron E. Case

A thesis submitted to the faculty of
The University of North Carolina at Charlotte.

in partial fulfillment of the requirements for the degree
of Masters of Science in the Department of

Electrical and Computer Engineering

Charlotte

2002

Approved by:

Dr. Thomas Weldon

Dr. Charles Stroud

Dr. David Binkley

ii

©2002
Aaron Earnest Case

ALL RIGHTS RESERVED

iii

ABSTRACT

AARON EARNEST CASE. Mixed Signal Fault Simulator: Comparisons of
Hardware and Simulation Results. (under the direction of DR. THOMAS PAUL
WELDON)

 This thesis describes a mixed signal fault simulator and compares simulated

results to theoretical and hardware experimental results. The fault simulator takes a

SPICE net list file as input and produces, as output, the circuit’s behavior under certain

fault conditions in order to establish the fault coverage of combinations of test waveforms

and output metrics. The present form of the fault simulator includes catastrophic faults,

typically open or short circuits. To demonstrate the efficacy of the fault simulator,

simulated results were compared against hardware experimental results to verify the

accuracy of the simulator for the specific case of a BiQuad filter. In this thesis, the focus

is on the development of the analog portion of the mixed signal fault simulator, since the

treatment of the digital portions of the circuit is well known and well defined.

iv

ACKNOWLEDGEMENTS

 I would first and foremost like to thank Dr. Thomas P. Weldon for affording me

the opportunity to work under his direction on the DARPA neo-CAD project as well as

all direction and tutelage involved therein. I would also like to thank Dr. Thomas P.

Weldon for all the challenging and rewarding course work over the past few years. I

would like to thank Dr. Stroud for material support. I would like to thank Dr. Makki for

encouraging and convincing me to enter the graduate program at UNC Charlotte. I

would like to thank my fellow research assistants Clark Hopper, Steve Tucker, Jason

Morton, Ana Maria, Deepa Patel, Ramsey Hourani, and Konrad Miehle for their

respective contributions and assistance. Supported by Defense Advanced Research

Program Administration (DARPA) and managed by the Sensors Directorate of the Air

Force Research Laboratory, USAF, Wright-Patterson AFB, OH 45433-6543.

v

TABLE OF CONTENTS

LIST OF FIGURES………………………………………………………………………ix

LIST OF TABLES……………………………………………………………………….xii

LIST OF ABREVIATIONS………………………………………………………….…xiii

CHAPTER 1: INTRODUCTION

1.1 Current State of the Art………………………………………………………..3

1.2 Overview of Current Challenges and Solutions to Fault Simulation………….6

1.3 Statement of Problem………………………………………………………….8

CHAPTER 2: FAULT SIMULATION FUNCTIONAL OVERVIEW

 2.1 BIST Framework……………………………………………………………...9

 2.2 Fault Simulator Functional Flow…………………………………………….10

 2.3 Fault Simulation Architecture………………………………………………..15

 2.3.1 SPICE Input……………………………………………………..…15

 2.3.2 Parser……………………………………………………………….17

 2.3.2.1 Component Statistics…………………………………….17

 2.3.3 Test Pattern Generation…………………………………………..20

 2.3.4 Fault File Generation……………………………………………..20

 2.3.5 SPICE Engine……………………………………………………...21

 2.3.6 ORA………………………………………………………………..22

 2.3.7 Statistical Analysis…………………………………………………22

 2.4 Class Objects…………………………………………………………………22

 2.4.1 Class Resistor……………………………………………………....23

 2.4.2 Class Inductor……………………………………………………...23

vi

 2.4.3 Class Capacitor…………………………………………………….23

 2.4.4 Class Ora…………………………………………………………...23

 2.4.5 Class Gsrc………………………………………………………….23

 2.4.6 Class Vsrc………………………………………………………….24

 2.4.7 Class Circuit…………………………………………………..……24

 2.4.8 Class DotEnds……………………………………………………...24

 2.4.9 Class Other…………………………………………………...…….24

 2.4.10 Class Xsubckt……………………………………………….…….25

 2.4.11 Class CircuitStats……………………………………………...….25

 2.4.12 Class DotSubckt……………………………………….………….25

 2.4.13 Class Isrc………………………………………………………….25

 2.4.14 Class Comment………………………………………………..….25

 2.4.15 Class Esrc………………………………………………………....26

 2.4.16 Class Statistics……………………………………………………26

 2.4.17 Class Component………………………………………………...26

 2.4.18 Class Mos…………………………………………………..…….26

 2.4.19 Class Faultlist……………………………………………………..27

 2.4.20 Class Tpg…………………………………………………...…….27

 2.4.21 Class Data………………………………………………………...27

 2.5.1 Computational Complexity………………………………………………..27

 2.5.2 Computational Time………………………………………………….……27

 2.5.3 Parallel Processing…………………………………………………………28

 2.6 Faultsim……………………………………………………………………...29

vii

CHAPTER 3: VERIFICATION WITH HARDWARE

 3.1 Biquadratic Filter Circuit…………………………………………………….31

 3.2 Modeling the Biquad Efficiently…………………………………………….33

 3.3 Theoretical Results (Hand Calculations)………………………………….…36

 3.3.1 Calculation for Specific Fault Conditions………………………....37

3.3.1.1 Sout Floating Point …………..…………………….……..40

3.3.1.2 Sdel Floating Point………………………………..………41

3.3.1.3 Smag Floating Point……………………………………….41

3.3.1.4 Summary of Floating Point Calculations………………...43

3.3.2 Digital ORA Metrics……………………………………………….44

 3.3.2.1 S16out Digital Value…………………………………...…..44

 3.3.2.2 S16del Digital Value………………………………….……45

 3.3.2.3 S16mag Digital Values……………………………………..46

 3.3.2.4 Summary of Digital Calculations………………………..46

 3.4 Simulation Data for Biquad Filter Circuit……………………………...……47

 3.4.1 Analog Results for Fault Simulator………………………….…….48

 3.4.2 Digital Results for Fault Simulator……………………………...…53

 3.5 Comparison with Experimental Hardware……………………………...……58

 3.6 Good Circuit Result Confirmation……………………………………..…….60

3.7 Conclusion……………………………………………………………..…….62

CHAPTER 4: POTENTIAL FUTURE DIRECTIONS

 4.1 Speeding up Fault Simulation………………………………………….……64

 4.2 Fault Coverage…………………………………..…………………………..67

viii

 4.3 Receiver Operating Characteristics……………………………………….…70

 4.4 Bhattacharyya Distance and Fast TPG Pattern Searching………………….73

REFERENCES…………………………………………………………………………..77

APPENDIX A: Class Libraries and their Functions……………………………………..80

APPENDIX B: List of TPG Waveforms………………….……………………………..82

APPENDIX C: OpAmp1 Spice Net List…………….…………………………………..84

APPENDIX D: BiQuad Net List……..……………………………………….…………85

APPENDIX E: Faultsim and Class Library Manual...……………………….………......86

APPENDIX F: Histograms for Each Fault vs. Fault-Free for S16out and S16mag
 Metrics for Each Fault with 19.5 kHz Count-up
 Waveform…………………………………………………...………...135

ix

LIST OF FIGURES

FIGURE 2.1 Built in self test (BIST) framework.

FIGURE 2.2 Fault simulator functional flow diagram.

FIGURE 2.3 Fault simulator detailed functional flow graph.

FIGURE 2.4 Statistical models showing process pdf (probability density function) in
 upper trace and two lower traces illustrating single chip pdf’s for
 two different chips. Lower two traces indicate component variations
 within a single chip or integrated circuit.

FIGURE 2.5 Stuck-off fault for transistor illustrating 100 M � series resistor used to
 implement fault.

FIGURE 2.6 Stuck-on fault for transistor illustrating 1 ohm parallel source drain
 resistor used to implement fault.

FIGURE 2.7 Faultsim help screen showing description of command-line parameters
 and example command-line.

FIGURE 3.1 BiQuad filter circuit used for benchmarking fault simulator against
 hardware.

FIGURE 3.2 Frequency response of BiQuad filter shown in Fig. 3.1 with 1 kHz cutoff
 frequency for high pass low pass and band pass.

FIGURE 3.3 BiQuad hardware implementation using AD820 amplifier.

FIGURE 3.4 Emulation of AD820A amplifier used in BiQuad circuit design ideal
 voltage controlled voltage source, two diodes and output impedance
 resistor.

FIGURE 3.5 Inverting amplifier for input of BiQuad circuit used to translate 0 to 5
 volt input to 5 to 0 volt output. Gain of VCVS is -1.

FIGURE 3.6 SPICE simulation of circuit of BiQuad showing input (lower trace) and
 output (upper trace). Transient output response due to initial conditions is
 visible in the output plot.

FIGURE 3.7 SPICE plot showing input (lower trace) and output (upper trace) of faulty
 BiQuad circuit with 2.5-V DC output condition.

x

FIGURE 3.8 Illustration showing area corresponding to the fault for 2.5-V output
 condition of Fig. 3.7 over 256 clock cycles for computing Sout metric. The
 area is 2.5x256=640.

FIGURE 3.9 Illustration showing area corresponding to the fault for 2.5-V output
 condition over 256 clock cycles for computing Sdel metric. The top left
 plot is the input waveform, the top right plot is the output waveform, and
 the bottom waveform is the resultant subtraction of the two upper plots.
 The lower plot with equal areas above and below the time axis have a net
 result of zero.

FIGURE 3.10 Illustration showing area summed for 2.5-V output condition over 256
 clock cycles for Smag metric. Top left is input waveform, top right is
 output waveform, bottom left is result of subtraction of output from input,
 and bottom right is magnitude of bottom left.

FIGURE 3.11 Fault simulator results for analog Sout ORA metric for BiQuad filter at 5
 MHz clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V
 amplitude, 2.5 V offset, and 0-5V output range. The dotted histogram is a
 composite of all faults rescaled and normalized relative to the soled
 histogram which is the histogram for fault-free circuits.

FIGURE 3.12 Fault simulator results for analog Sdel ORA metric for BiQuad filter at 5
 MHz clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V
 amplitude, 2.5 V offset, and 0-5V output range. The dotted histogram is a
 composite of all faults rescaled and normalized relative to the soled
 histogram which, is the histogram for fault-free circuits.

FIGURE 3.13 Fault simulator results for Analog Smag ORA metric for BiQuad filter at 5
 MHz clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V
 amplitude, 2.5 V offset, and 0-5V output range. The dotted histogram is a
 composite of all faults rescaled and normalized relative to the soled
 histogram which is the histogram for fault-free circuits.

FIGURE 3.14 Fault simulator results for analog S16out ORA metric for BiQuad filter at 5
 MHz clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V
 amplitude, 2.5 V offset, and 0-5V output range. The dotted histogram is a
 composite of all faults rescaled and normalized relative to the soled
 histogram which is the histogram for fault-free circuits.

xi

FIGURE 3.15 Fault simulator results for analog S16del ORA metric for BiQuad filter at 5
 MHz clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V
 amplitude, 2.5 V offset, and 0-5V output range. The dotted histogram is a
 composite of all faults rescaled and normalized relative to the soled
 histogram which is the histogram for fault-free circuits.

FIGURE 3.16 Fault simulator results for analog S16mag ORA metric for BiQuad filter at 5
 MHz clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V
 amplitude, 2.5 V offset, and 0-5V output range. The dotted histogram is a
 composite of all faults rescaled and normalized relative to the soled
 histogram which is the histogram for fault-free circuits.

FIGURE 3.17 Oscilloscope plot showing presence of transient effect on 5MHz Cup
 waveform with 5Vpp input on BiQuad filter (compare to SPICE plot Fig.
 3.6). Upper trace is 0 to 5 V Cup input TPG waveform (after inverting
 amp of Fig. 3.5), showing transient behavior within first 4 or 5 cycles of
 saw-tooth waveform.

FIGURE 3.18 Complete schematic of BIST system used in collecting hardware
 experimental results for the BiQuad filter benchmark circuit of Fig. 3.1.

FIGURE 4.1 Operational amplifier circuit (OpAmp1).

FIGURE 4.2 Histogram of fault-free circuits and faulty circuits for OpAmp1 with 200
 mV Cup waveform at 10 kHz clock frequency.

FIGURE 4.3 Histogram of fault-free circuits for OpAmp1 with 200 mV Cup waveform
 at 10 kHz clock frequency.

FIGURE 4.4 Histogram of fault-free circuits and circuits with M1 open for OpAmp1
 with 200 mV Cup waveform at 10 kHz clock frequency.

FIGURE 4.5 Histogram illustrating false positives and false negatives.

FIGURE 4.6 Receiver operating curve.

xii

LIST OF TABLES

TABLE 2.1 Floating point ORA metrics

TABLE 2.2 Digital ORA metrics

TABLE 2.3 Process statistics

TABLE 3.1 Fault List for BiQuad filter circuit simulation

TABLE 3.2 List of Specific Components and Faults for ORA Confirmation were Vout

 is a constant 2.5 VDC

TABLE 3.3 The theoretical floating point values for ORA metrics Sout, Sdel, and Smag
 for the fault in Table 3.2 with 2.5-VDC output with saw-tooth input over
 one cycle

TABLE 3.4 The theoretical digital values for ORA metrics S16out, S16del, and S16mag for
 the fault in Table 3.2 with 2.5-VDC output with saw-tooth input over one
 cycle

TABLE 3.5 Faults with only slight effect on the output of BiQuad filter for count-up
 waveform at 19.5 kHz

TABLE 3.6 Sout comparison of analog theoretical values against fault simulator results

TABLE 3.7 Sdel analog theoretical values against fault simulator results

TABLE 3.8 Smag analog theoretical values against fault simulator results

TABLE 3.9 S16out digital theoretical values against fault simulator results.

TABLE 3.10 S16del digital theoretical values against fault simulator results

TABLE 3.11 S16mag digital theoretical values against fault simulator results

TABLE 3.12 Comparison of experimental hardware and simulations for S16out ORA
 metric showing difference between means and percent difference

TABLE 3.13 Comparison of experimental hardware and simulations for S16mag ORA
 metric showing difference between means and percent difference

xiii

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit

BIST Built in Self Test

BJT Bipolar Junction Transistor

CAD Computer Aided Design

CUT Circuit Under Test

DFT Design for Test

DUT Device Under Test

FET Field Effect Transistor

FPGA Field Programmable Gate Arrays

HBIST Hybrid Built in Self Test

IC Integrated Circuit

MOS Metal Oxide Semiconductor

ORA Output Response Analysis

ROC Receiver Operating Characteristics

VCVS Voltage Controlled Voltage Source

VLSI Very Large Scale Integrated

SFA Statistical Fault Analyzer

SPICE Simulation Program with Integrated Circuit Emphasis

SoC System on a Chip

TPG Test Pattern Generator

pdf Probability Density Function

1

CHAPTER 1: INTRODUCTION

 This thesis presents a mixed signal fault simulator for built-in self-test (BIST) and

gives experimental hardware and simulation results that verify the performance of the

simulator. The focus of this effort is on the analog portion of the mixed signal fault

simulator since the methodology for digital portions of a mixed signal system are well

known. The thesis begins with an introduction of the relevance of fault simulation and

how it fits into the overall product cycle. Next, the architecture and methods used to

develop the fault simulator are discussed. Then, simulator results are compared with

hardware results to validate the fault simulator models and techniques. Finally, directions

for future work are offered. In the following, the background of the fault simulator is

given. Details on the simulator and experimental results are given in subsequent

chapters.

 To place the need for a fault simulator in a larger context, consider a typical

manufacturing process that has at some point a verification stage, whereby it is

determined that a product meets specifications. This stage of production should seek to

pass products that are good and eliminate the products that are bad, and only the products

that are bad. In the process of product verification there are inevitably four categories of

products found [21]. In the first category, bad units that are found to be good in

production are known as false positives. This category can be costly to a firm through

replacement costs, loss of reputation, and ensuing loss of market share. The false-

2

positive portion would ideally be zero for any enterprise as it is a liability in the mart of

competitive commerce. In the second category, units that are found to be bad, and are

bad, are minimally damaging to an enterprise in the sense that there is a loss of materials.

In the third category, good units that are found to be bad in production are known as false

negatives [21]. False negatives do not greatly damage a firm’s reputation, but cause loss

of resources and time. In the final category, good units that are found to be good in

production are the yield of an enterprise. So, it can be seen that any product verification

process should limit any erroneous prognosis as well as bad products. In this

manufacturing context, the fault simulator is a tool for designing built in self test (BIST)

to minimize losses due to false positives and false negatives.

 In addition, the complexity of mixed signal and analog integrated circuits lead to

complicated verification requirements [18]. In particular, it is difficult to predict how

analog portions of a mixed signal system will behave under variable circumstances such

as component variations, faults, and different test metrics. Such predictions of system

behavior, either for use with external testing equipment or for use with built-in self-test

architectures, can be generated by a fault simulator early in the design and test cycle.

Through such fault simulation, fault coverage can be determined for a set of test patterns

and output metrics to ensure that a circuit is free of manufacturing defects.

 In the following, we first review the current state of the art. Then we give an

overview of current challenges in fault simulation. Finally, the problem addressed in this

thesis is stated.

3

1.1 Current State of the Art

 In digital portions of a mixed signal circuit, fault modeling is well established.

Digital fault modeling can be classified into two categories, gate level fault modeling and

transistor level fault modeling [21, 8, 2]. In digital circuits there are two types of faults,

stuck-at-one(sa1) and stuck-at-zero(sa0)[2]. Both levels of digital fault modeling utilize

these types of faults. In gate level fault modeling, the stuck at faults are exercised at the

gate inputs and outputs. In transistor level fault modeling required for CMOS

technology, stuck at faults are modeled at the transistor level rather than just the gate

level, giving a more complex yet comprehensive picture of fault conditions.

 There has been much done in the area of digital fault simulation and modeling,

but much less work in the realm of analog fault simulation [8]. The lack of a mature

analog fault simulator can be partly attributed to the lack of mature fault models for

analog circuits [7]. Furthermore, modeling and isolating faults in analog circuits is one if

the most difficult tasks in diagnostic engineering [8].

 The work on analog fault models can be classified into two categories,

catastrophic faults and parametric faults [26]. Catastrophic faults, also referred to as hard

faults, are the analog equivalents of stuck at faults in the digital domain. Analog hard

faults occur when the terminal nodes of the component are stuck short or stuck open.

Parametric faults are defined as any variation of the component values outside the

acceptable performance range or tolerance limits [27].

 The current models used for catastrophic faults of analog circuits include the use

of high and low resistances to model shorts and opens at the component terminals as later

shown in Figs. 2.5 and 2.6[27, 28]. The resistive and capacitive components have a 1 �

4

resistance in parallel (Rp = 1 �) for shorts and a 100 M� resistance in series (Rs = 100

M�) for opens. Similarly, the MOSFET is faulted in much the same manner across the

source and drain only. In contrast, the BJT has a stuck-open and stuck-short fault

between each of its three terminals, collector, emitter, and base [27].

 Many different methods have been proposed for analog fault simulation. One

notable method uses DC transfer function testing to test and isolate faults [10]. While

DC testing is promising in cost and compact in layout size, the method has lower fault

coverage at the macro level and is not viable at the transistor level [10]. DC testing does

provide for simpler fault modeling but, does not give adequate parametric fault coverage

for many types of analog circuits [10].

 A second method, behavioral fault simulation works well for simplifying and

expediting analog fault simulation [4]. In behavioral fault modeling methods, the basic

algorithm is the same as that for event-driven logic simulation, except that the fault

simulation algorithm propagates fault lists along with logic values through gate level

hardware descriptions [4]. Behavioral modeling is generally accepted as being faster but

less accurate than other methods and does not lend itself well to analog fault modeling

without acceptable levels of complication. However, behavioral modeling only works at

the gate level and therefore will not lend itself to analog micro-modeling [4].

 A third method, functional fault models also work well at simplifying digital fault

modeling but are often too complex and don’t offer high fault coverage at the transistor

level for analog faults [8]. Functional fault models work on blocks of analog circuits and

can therefore only diagnose a faulty block of components not individual component

5

failures. Furthermore, functional fault models only offer a limited number of output

conditions for each fault given a predefined test vector.

 Another analog fault modeling technique is the test-oscillation methodology. The

oscillation methodology treats every analog sub-circuit as an oscillator for verification

[9]. The technique tests the frequency response of the fundamental analog blocks against

known frequencies for fault-free case to detect faults [9]. While the method is promising

with respect to cost and area overhead, in most cases, the method is not generally

applicable to all types of circuits without considerable modifications [9, 2, 5].

For any methodology, fault simulation is used to identify the best set of test

vectors and output metric to be capable of finding of identifying the maximum number of

faults in a circuit. Fault simulation allows investigation of the efficacy of different test

vectors and output metrics. By using the fault simulator, the best test vector and output

metrics can be identified for a particular system.

Although not recommended, fault simulation could be bypassed in the design of a

system. In this case, the verification stages of chip manufacturing consist of blindly

applying a signal and measuring a “good output” for a fault-free unit. Without fault

simulation data, selecting test vectors for any testing architecture would be not be

possible due to a lack of prior knowledge of circuit behavior under faulty conditions. The

fault simulator on the other hand allows investigation of input/output behavior of any

possible fault conditions for a variety of test vectors and output metrics.

 At present, the state of the art for analog and mixed signal fault modeling has yet

to witness the same success as digital fault modeling and test pattern generation [8]. The

more primitive state of analog and mixed signal fault simulations and techniques can be

6

attributed to the complexity of fault modeling in an analog circuit versus digital circuits.

Research in IC testing has produced various methods and products to approach the

problem of analog fault modeling in mixed signal circuits but has yet to arrive at any

widely accepted standard or method. The aforementioned technologies offer potential for

analog fault modeling to close the gap on much more advanced digital fault modeling [2].

Thus, this thesis focuses on initial steps toward mixed-signal fault simulation.

 Analog fault simulation and fault modeling present different, and more complex,

challenges than digital fault modeling, due to the nature of analog circuits [26, 27]. The

performance of analog portions of a mixed signal circuit are subject to parametric

variations, in addition to catastrophic faults such as an open or a short. Any simulation or

testing procedure for an analog circuit must include parametric variation of components,

as well as catastrophic faults, in verification and test vector generation. Therefore, analog

portions of a mixed signal IC present much more complex problems in testing and

simulation, and thus are more costly in verification. In the next section, we give further

overview of issues in fault simulation.

1.2 Overview of Current Challenges and Solutions to Fault Simulation

 Although there has been much work in the area of digital fault simulation and

fault modeling, analog fault simulation lags far behind that of digital fault simulation due

to the complexity of analog fault simulation and analog IC verification [8]. Analog and

mixed signal IC’s require more time and money investment in fault modeling and

simulation to achieve the same level of fault coverage as their digital counterparts [8].

The nature of an analog circuit makes testing, and testing decisions, considerably more

complex. With a digital circuit, a test vector will indicate that a certain gate or transistor

7

is stuck at 0 or 1, but an analog test vector needs to indicate if a analog circuit is within a

predetermined error bound [16]. Thus, one complicating problem in analog testing is

where to draw the line, or threshold, for fault-free or faulty analog circuits as well as how

to quantify the yield of fault-free circuits. In this, fault coverage can be defined as the

number of detected faults divided by the total number of possible faults (i.e., in a fault

list) [2].

 An analog or mixed signal fault simulation can consider normal parametric

variations in conjunction with catastrophic faults in fault simulation. To accurately

estimate the probability distribution of how a fault-free circuit behaves, a large number of

samples taken from parametrically randomized circuits is required. The range of values

for any given output metric that are obtained for the randomized good circuit will indicate

natural variations due to the fabrication and manufacturing process of the system. This

parametric randomization also must be done for each injected fault to determine

accurately the probability distribution of output metric values for each fault. The

foregoing randomization for fault-free and faulty circuits, combined with need to evaluate

the circuit with a multitude of waveforms, lead to very large simulation times even for the

simplest of circuits. Simulation times on the order of weeks can be encountered with as

few as 15 components, 30 faults, 200 randomizations, and 30 waveforms. In this

example, there are (30+1)×200×30= 186,000 combinations. Therefore, an important

issue in fault simulation considered by this thesis is reducing simulation times and

developing techniques to accelerate computation, and these issues are partly addressed in

the future work section.

8

1.3 Statement of Problem

 This thesis describes the design and testing of the analog portion of a mixed signal

fault simulator. The simulator takes as input a SPICE file of a circuit under test (CUT)

and produces, as output, statistical information on the behavior of the circuit under all

fault conditions with a variety of candidate test pattern waveforms and output metrics.

The raw output metric data of the simulator is post-processed into histograms that

provide statistical fingerprints of a variety of output metrics for each potential

catastrophic fault in the circuit. The output data and histograms can then be used to

identify the best input stimuli, or test pattern waveforms, and the best output metrics for

testing a hardware version of the circuit.

 The present fault simulator is tailored to a specific built-in self-test (BIST)

architecture for mixed signal systems. In the BIST architecture under consideration, test

pattern waveforms are applied and output metrics are measured [2][13]. Although the

current fault simulator is tailored for a specific architecture for BIST, the modular design

of the fault simulator permits adaptability to future architectures in future work.

 In Chapter 2, we first describe the design of the fault simulator. Then, simulation

results for a BiQuad benchmark circuit are given in Chapter 3 and compared with

hardware measurements and compared with hand-calculated theoretical results. Finally,

Chapter 4 gives suggestions for future directions on the fault simulator.

9

CHAPTER 2: FAULT SIMULATOR DESCRIPTION

 The focus of the fault simulator under consideration is with the analog portion of

a mixed signal fault simulator. As discussed in the previous chapter, the more difficult

issues are on the analog side, whereas there exist well known methodologies for fault

simulation on the digital side. In the following, the analog fault simulator is described.

Experimental results using the simulator are presented in the subsequent chapter.

2.1 BIST Framework

 The fault simulator takes, as input, a spice net list describing a circuit and

simulates randomized versions of the circuit with, and without, faults. The present fault

simulator is designed to be used with the built-in self-test (BIST) architecture shown in

Fig. 2.1. In the BIST architecture of Fig. 2.1, an input test pattern is generated in digital

form in the test pattern generator (TPG), and then converted to an analog waveform in the

digital to analog converter (DAC). The circuit under test (CUT) is then excited with this

analog waveform. The output of the analog CUT is then converted back to digital format

in the analog to digital converter (ADC) and analyzed in the output response analysis

(ORA) portion of the system. The ORA then generates the output metrics, or output

measures, from the raw data. The ORA data is then used to classify the analog circuit as

fault-free or faulty.

10

2.2 Fault Simulator Functional Flow

 The fault simulator was designed to emulate the BIST framework of Fig. 2.1 and

simulate the variations in thousands of randomized fault-free and faulty circuits with

many different test waveforms (TPG) and different output metrics (ORA). The fault

simulator generates the data needed to choose the best possible TPG test vector and best

possible output metric, or to choose the best collection of TPG test vectors and output

metrics.

In the fault simulator, the input circuit is first parsed into fundamental

components, subsequently regenerating randomized versions of the circuit with, and

without, faults. The randomizations emulate the normal variations of components in the

circuit. The simulator also generates dozens of TPG waveforms to be combined with the

randomized circuits, in all possible combinations. Lastly, a separate post processing

program is used to convert the output data into histograms of the ORA output metric data

to select the best vector and ORA metric and to determine the fault coverage it provides.

TPG DAC

ORA ADC

Analog CUT

Analog Portion Digital Portion

Initialize

Result

 Figure 2.1 Built in self test (BIST) framework.

11

 The fault simulator is written in the object oriented language of C++ for

reusability, platform independence, and low maintenance requirements. The fault

simulator is composed of a class library and an executable named faultsim. In addition,

SPICE primitives are implemented as class objects in the class library. The C++

compiler and version used is the GNU complier version 3.1, a free ANSI package

available to the public, without restrictions. Further details on the class library are found

later in section 2.4.

 A functional flow diagram of the simulator is given in Fig.2.2. In the first step of

Fig. 2.2, the fault simulator takes a SPICE netlist as input. In the second step, the

simulator parses the SPICE file into its fundamental components, such as FETS, resistors,

capacitors, and inductors. [23].

 In the third step of Fig. 2.2, the circuit file components are randomized

parametrically and used to create a randomized batch of fault-free circuit files with no

catastrophic faults. The randomization in this step is representative of normal variability

in component values due to manufacturing processes. Then, faults are inserted by

replacing components in the same set of parametrically randomized files with each

catastrophic fault possible in the system.

 In the “simulation” step of Fig. 2.2, the files are then simulated using the spice

engine ELDO, the underlying component in the Accusim package from Mentor Graphics.

The fault simulator currently uses Mentor Graphics ELDO, a proprietary product, but can

potentially be run on any version of SPICE [24]. Additional inputs to the fault generator

step include statistics describing the parametric variation of components and the set of

TPG waveforms under consideration.

12

 In the next step of Fig. 2.2, Output Response Analysis (ORA), the output response

from the simulations are used to compute the output metrics. The fault simulator

produces output files including three ORA metrics, Sout, Sdel, and Smag, found in Table

2.1. In the Table, Sout is the sum of output voltages at each clock cycle for some number,

N, of clock cycles. Similarly Sdel is the sum of Vout –Vin for some number, N, of clock

cycles. Similarly, Smag is the sum |Vout-Vin|. The number, N, of clock cycles for the

summing of the ORA portion is variable and set at runtime.

Net List Parser

Fault File Generator

Simulation

Output Response Analysis

Histogram Generation

 Statistics
 Test Patterns

Spice Net List

Figure 2.2 Fault simulator functional flow diagram.

13

][
1

0

nVS
N

n
outout �

−

=

=

()�
−

=

−=
1

0

][][
N

n
inoutdel nVnVS

�
−

=

−=
1

0

][][
N

n
inoutmag nVnVS

 The summations in the ORA metrics of Table 2.1 are floating point summations

that are often useful for the purpose of investigation. However, in actual implementation

the output metrics of Fig. 2.1 are necessarily binary, with limited bit resolution. So, in

addition to the floating-point values of Table 2.1, the binary equivalents of Table 2.2 are

also computed during the fault simulation. These values are then representative of actual

ORA data as would be measured in a hardware implementation.
 In Table 2.2, S16out, S16del, and S16mag are binary 16-bit equivalents of the metrics

of Table 2.1, where ((x))y is x modulo y [25]. Hence, ((x))65536 is the 16-bit binary

representation of x. In Table 2.2, S16out is the 16-bit binary sum of output voltages and

each clock cycle for some number, N, of clock cycles. Similarly S16del is the 16-bit binary

sum of Vout –Vin for sum number of clock cycles and S16mag is the 16-bit binary sum |Vout-

Vin|. The number of clock cycle durations are variable and set runtime. The analog

voltages corresponding to 00 hex and FF hex at the input of the ADC and the output of

the DAC in Fig. 2.1 are variables set at runtime.

Table 2.1
Floating point ORA metrics

14

65536

256

1

0
16]))[((��

�

�
��
�

�
�
�

�
�
�

�= �
−

=

nVS
N

n
outout

()()
65536

1

0
6553625625616]))[((]))[((��

�

�
��
�

�
�
�

�
�
�

� −= �
−

=

N

n
inoutdel nVnVS

()()
65536

1

0
6553625625616]))[((]))[((��

�

�
��
�

�
�
�

�
�
�

� −= �
−

=

N

n
inoutmag nVnVS

 For the case of the Sout metric of Table 2.1, the floating point output voltage at

each rising edge of the clock is added to the output voltage of each successive clock cycle

until the number, N, of user defined TPG clock cycles have elapsed. The Sout ORA

metric is then stored. For the case of the S16out metric of Table 2.2, the 16 bit digital

output voltage at each rising edge of the clock is added to the digital output voltage of

each successive clock cycle until the number, N, of user defined TPG clock cycles have

elapsed. The BIST system has multiple settings for the resolution of the ADC, DAC, and

the accumulator. For the purposes of this thesis, the bit resolution of the ADC, DAC, and

the final sum are limited to 8, 8, and 16 bits respectively.

The floating point calculation for Sdel in Table 2.1 computes floating point Vout-

Vin at each clock rising edge and sums them for the predetermined number, N, of clock

cycles. Similarly, the floating point calculation for Smag computes floating point |Vout-Vin|

at each clock cycle and sums them for the predetermined number, N, of clock cycles.

The 16 bit binary calculation for S16del in Table 2.2 computes 1’s compliment

Vout-Vin. at each clock cycle and sums them for the predetermined number, N, of clock

Table 2.2
 Digital ORA metrics

15

cycles. The subtraction Vout-Vin is implemented using ones compliment subtraction

where the two inputs are 8 bit unsigned and the output is 16 bit signed. Similarly, the

floating point calculation for Smag computes floating point |Vout-Vin| at each clock cycle

and sums them for the predetermined number, N, of clock cycles.

 After the “Output Response Analysis” step of Fig. 2.2, the ORA metrics

associated with each circuit file are stored in ORA files that are later post-processed in

the histogram generation step. In this final step of Fig. 2.2, histograms are generated

showing the distributions of ORA metric values for circuits with, and without, faults.

The histogram generation step is a separate software program to post-process the ORA

data. From the ORA data, the mean and standard deviation can also be calculated. The

end result is the statistical data that can be used to select the most effective TPG test

vector and ORA output metric (Sout, Sdel, Smag, S16out, S16del, S16mag), or collection of test

vectors and ORA output metrics, for maximum fault coverage.

2.3 Fault Simulation Architecture

 The overall operation of the fault simulator has been described in the previous

section in a functional flow form. This section provides more detail regarding each of the

pieces and how they operate together using a more detailed functional flow graph given

in Fig. 2.3.

2.3.1 SPICE Input

 In the first step of Fig. 2.3, the fault simulator reads in the SPICE netlist of the

device under test(DUT) of Fig. 2.1. The simulator requires standard SPICE net-list

16

Spice Net list

Parser

Test Patter
Generation

Fault File
Generation

Waveform Specs

FET R L C

TPGs

Spice Engine

ORA

Statistical
Analysis

Histograms

Component
Statistics

format; schematic and VHDL entries cannot be read. SPICE netlist was chosen since it is

widely used and standardized interface for describing the DUT of Fig. 2.1.

 Spice was developed at the UC Berkley for circuit simulations and is available as

open source to the public [23]. SPICE stands for Simulation Program with Integrated

Circuit Emphasis. SPICE is a general purpose circuit simulation tool that will run

Figure 2.3 Fault simulator detailed functional flow graph.

17

nonlinear DC, nonlinear transient and linear ac analysis. Circuits written using SPICE

can include resistors, capacitors, inductors, mutual inductors, independent and dependent-

current and voltage sources, lossy and lossless transmission lines, switches, uniform

distributed RC lines, and five most common semiconductor devices; diodes, BJTs,

JFETs, MESFETS, and MOSFETS. A SPICE net list file includes but is not limited to

information about components, nodal connections, voltage levels, model information,

various parameters, and input/output parameters.

2.3.2 Parser

 In the second step of Fig. 2.3, the parser takes the circuit and reads each line of

the SPICE file. The parser stores all of the information given by the file such as node

connections, component values, and other parameters. The parser recognizes

components such as R, L, C and converts them into corresponding C++ class library

objects, as indicated by the FET, R, L, and C objects below the parser in Fig.2.3

2.3.2.1 Component Statistics

 In the upper right of Fig. 2.3, the fault simulator then loads the statistical data

required to introduce the parametric variations into the component values. The SPICE file

is randomized the number of times specified, with components varied using a uniform or

Gaussian distribution according to the specified component statistics. The SPICE netlist

file is reconstituted for each catastrophic fault and randomized with the fault by the

number of parametric randomizations in the simulation. In this, phase of the simulation,

the statistics module of the Faultsim library calculates the appropriate Gaussian

distributed values for the components reflecting the tolerances of the corresponding

manufacturing processes.

18

 Resistive, inductive, and capacitive components are randomized parametrically

according to the default parameters shown in Table 2.3. The components are randomized

based on process (i.e., lot-to-lot) statistics and single-chip (i.e., within-a-chip) statistics.

A given process will have a Gaussian probability distribution function (pdf) as shown in

the top plot of Fig. 2.4. The second plot in Fig. 2.4 shows the pdf of component values

on a single chip where the values of the components of a single chip track each other as a

result of the processing. This distribution is much tighter, since devices on a single chip

will tend to track each other. The bottom plot shows that a distribution for another chip

may have a different mean value, but again with the tighter distribution.

Table 2.3

 Process statistics

 In Table 2.3, the process or, lot-to-lot, variation of resistors are defined with a

mean of 1 and a standard deviation of 0.1. This defines a Gaussian distribution of resistor

values that vary around their nominal value with a standard deviation of 10 percent. For

any given single chip, resistors have a Gaussian distribution center around their nominal

value of four percent as indicated by the single-chip statistics column of Table 2.3 with

mean 1 and a standard deviation of 0.04 for the resistors. Similarly, capacitor-inductor

variation is defined by Table 2.3 for lot-to-lot and single chip.

Component Process(chip-to-chip)
statistics

Single-chip(within-a-chip)
statistics

 PDF µ � PDF µ �
Resistors Gaussian 1 0.1 Gaussian 1 0.04

Capacitors Gaussian 1 0.11 Gaussian 1 0.03

Inductors Gauss 1 0.12 Gaussian 1 0.02

19

 In this, it is not likely for the resistors of a chip to be scattered across the full

range of lot-to-lot variation. The processing of chips tends to bias component values on a

single chip in the same direction giving each chip its own tighter distribution with a

standard deviation smaller than lot-to-lot variance. The software implements

randomization of chips as illustrated in the two lower plots of Fig. 2.4.

 The parser uses as many library modules as needed for reading and faulting the

spice net-list files. The library contains classes for implementing resistors, capacitors,

inductors, transistors, and different types of sources. When reading a file, if a resistive

component is encountered the parser instantiates a Resistor class object from the Faultsim

library, which will store the device information for later parsing. Similarly, other SPICE

components are implemented as C++ objects in the fault simulation library.

Process PDF

Chip #1 PDF

Chip #2 PDF

Figure 2.4 Statistical models showing process pdf (probability density
function) in upper trace and two lower traces illustrating single chip
pdf’s for two different chips. Lower two traces indicate component

variations within a single chip or integrated circuit.

20

2.3.3 Test Pattern Generation

 The upper left of Fig. 2.3 illustrates generating TPG patterns for the fault

simulation. The candidate test patterns can be found in Appendix B. These patterns

include saw-tooth, frequency sweep, and random waveforms of variable amplitude and

frequency. TPG patterns are generated by the TPG class object of the Faultsim library as

a piece-wise linear waveform. During simulation, the TPG files are then combined with

the aforementioned randomized circuit files generating all possible combinations of

parametrically randomized circuits, and TPG waveforms, and faults. The TPG

waveforms are stored in files according to waveform, amplitude, and frequency. The

clock included in each simulation takes 256 clock cycles(to count through 28 bits), to

drive the DAC of Fig. 2.1, making the effective waveform frequency equal to the clock

frequency divided by 256. This simple relationship between the clock and waveform

frequency however is not true for certain waveforms such as frequency sweep. In

addition, options in the fault simulator allow for varied number of repetitions for the test

pattern waveform, and hold off and time before collecting ORA data.

2.3.4 Fault File Generation

In the fault file generation step of Fig. 2.3, hard faults are injected into copies of

the original circuit for resistors, capacitors, inductors, and MOSFETS. A resistive

catastrophic fault is emulated by placing a 100M� in place of the original resistor value

for an open, and a 1� resistor for a short. At present, capacitive opens and inductive

shorts are simulated as a 2 fF capacitor and 2 fH inductor, respectively. However,

capacitive shorts and inductive opens are temporarily implemented as 2 Farad capacitor

and 2 Henry inductor, respectively, and remain for future implementations otherwise.

21

For transistors, the stuck-off transistor level fault emulated by disconnecting the

transistor from the circuit with a 100 Meg ohm resistor as shown in Fig. 2.5. The stuck-

on transistor level fault is emulated by a 1 ohm resistor between the source and drain of

the transistor as shown in Fig. 2.6. [2]

���������	�
��

2.3.5 SPICE Engine

 Following the fault file generation step of Fig. 2.3, the SPICE engine used to do

the simulation is the Mentor Graphics ELDO tool [24]. The main fault simulator,

Faultsim, executable calls ELDO for all simulations using the command “ELDO

filename.cir”, where filename.cir is the spice file to be simulated. The ELDO simulation

Figure 2.5 Stuck-off fault for transistor illustrating 100 M� series
resistor used to implement fault.

Figure 2.6 Stuck-on fault for transistor illustrating 1 � parallel source drain
resistor used to implement fault.

22

then produces an output file that contains all of the voltage and time data that will be used

to calculate the ORA metrics.

2.3.6 ORA

 In the next step of Fig. 2.3, once a simulation is complete the six ORA metrics,

Sout, Sdel, Smag, S16out, S16del, S16mag shown in Table 2.1 and 2.2 respectively, are then

computed and stored in an ORA file. The ORA files are organized by TPG waveform for

later classification of test vector efficacy and fault coverage. Each ORA file contains all

the ORA data for the particular TPG pattern and for all fault conditions. Each line of an

ORA file contains eight items; the circuit filename, the test vector name, and the ORA

metric values (Sout, Sdel, Smag, S16out, S16del, S16mag) for that combination.

2.3.7 Statistical Analysis

 In the final step of Fig. 2.3, statistical analysis, the ORA files are post processed

using a separate executable program named anarun. The anarun executable is used to

produce histograms of the ORA metrics (Sout, Sdel, Smag, S16out, S16del, and S16mag) of Table

2.1 and 2.2 which provide a graphical and statistical insight into the efficacy of the test

vector. This post-processing tool also computes the mean, standard deviation, and

variance of the ORA data, as well as, arrange the data for importation to spreadsheet tools

for graphical interpretation as a histogram.

2.4 Class Objects

 As mentioned beforehand most of the functionality in the fault simulator is

implemented as C++ class objects in the Faultsim library. The following sections give

brief descriptions of each of the classes and their functions.

23

2.4.1 Class Resistor

 Class Resistor implements the resistor and contains data for the name, resistance

value, and nodes of the device. The object also includes statistical parameters, and

member functions for reading, writing, and randomizing a resistor.

2.4.2 Class Inductor

 Class Inductor works much in the same way that class resistor does. Class

inductor contains data for the name, inductance value, and nodes of the devices. The

object also includes statistical parameters, and member functions for reading writing, and

randomizing a inductor.

2.4.3 Class Capacitor

 Class Capacitor, much like classes inductor and resistor, contains data for the

name, capacitance value, and nodes of the devices. The object also includes statistical

parameters, and member functions for reading writing, and randomizing a capacitor.

2.4.4 Class Ora

 This class object processes the output files from the spice engine, the .chi files, to

produce the ORA metrics found in the ORA files. This class contains member functions

to search the .chi files for the time and voltage data to compute the output metrics in

Table 2.1 and Table 2.2. This class computes the floating point analog ORA metrics as

well as the digital metrics. The class object also deletes the rather bulky .chi files after

storing the results of the ORA metrics in the ORA files.

2.4.5 Class Gsrc

 This class object implements the G-model of spice, or a voltage controlled current

source. This class contains member functions to process the nodes of the input and

24

output along with the transconductance of the model. At present the object does not

introduce faults or randomize this component.

2.4.6 Class Vsrc

 This class object implements the independent voltage and stimulus source in

SPICE. This class contains the data for reading, storing, and writing the nodes and

voltage values of independent voltage sources. At present these components do not

implement fault or randomization.

2.4.7 Class Circuit

 This class handles the circuit level functions of the parser. The class objects loads

circuit level objects and segments the tasks of to lower level objects contained therein.

This class contains the data for the complete netlist in the form of a collection of objects

appropriate to the corresponding components of the original.

2.4.8 Class DotEnds

 This class implements the “.ends” statement that signals the end of a sub-circuit in

spice. This object performs the task reading, storing, and writing the “.ends” statements

found in SPICE files.

2.4.9 Class Other

 This class implements any SPICE token that is not implemented in one of the

other class libraries. This class contains the functions and data for reading, storing, and

writing all SPICE statements listed in the Other class member functions. These

statements include, but are not limited to .ac, .dc, .plot, .print, .probe, .step, .temp etc.

There are no functions for faults or randomization in this class.

25

2.4.10 Class Xsubckt

 This class is used for SPICE sub-circuit level statements which typically

correspond to one line in a SPICE file. This class contains the member functions for

reading, storing, and writing the sub-circuit level statements found in SPICE files.

2.4.11 Class CircuitStats

 This class contains the all the functions and data to implement the process (lot-to-

lot) and single-chip (within a single Integrated circuit) statistical characteristics of the

randomizer as described in section 2.3.2. This class contains a wide array of statistical

functions to implement within-chip as well as process (chip-to-chip) pdf's into the

randomization of the SPICE file.

2.4.12 Class DotSubckt

 Class DotSubckt implements the SPICE statement “.subckt,” a definition for a

sub-circuit in a SPICE file. This class contains the functions and data for reading,

storing, and writing the nodes and names of the sub-circuits of SPICE. This class object

has no faults or randomization.

2.4.13 Class Isrc

 Class Isrc implements the SPICE independent current source statements found in

SPICE files. This class contains the functions and data for reading, storing, and writing

the nodes and values of independent current sources. This class has no faults or

randomization.

2.4.14 Class Comment

 Class Comment implements the comments of SPICE that are denoted by the “*”

character. This class contains the member functions to identify comments, read

26

comments, and write comments. This class deals only with the contents of comments and

therefore has no statistical functions.

2.4.15 Class Esrc

 The Esrc implements the SPICE voltage controlled voltage source statements.

This class contains the member functions to recognize, read, store, and write E models

found in SPICE files. At present, there are no faults or randomization built into this

class.

2.4.16 Class Statistics

 Class Statistics implements statistical functions that are used in CircuitStats class

to generate randomized values from the statistical mean and standard deviation. This

class and its member functions do not operate directly on any given component but do

serve as support to the process of randomization.

2.4.17 Class Component

 Class Component identifies each component level object that would be found in a

SPICE netlist and acts as a container for particular components. Class component

contains the member functions to identify components and execute the proper member

classes according to the type of component. This class does not implement statistical

randomization or faults.

2.4.18 Class Mos

 Class Mos implements the MOSFET component and contains data for the name,

channel size, and nodes of the device. The object also includes statistical parameters, and

member functions for reading, writing, and randomizing a MOSFET transistor. This

class also implements the stuck-on and stuck-off faults illustrated in Figs. 2.5 and 2.6.

27

2.4.19 Class Faultlist

 Class Faultlist implements the generation of fault lists based on the circuit being

simulated. This class contains the functions for generating fault lists for shorts and opens

of R, L, C, and MOS components.

2.4.20 Class Tpg

 Class Tpg contains the member functions that create TPG test waveforms based

on input parameters of clock frequency, waveform, amplitude, repetitions, and hold off

for ORA calculations. The Tpg class generates piecewise linear stimulus in SPICE

format and can store the SPICE code in files.

2.4.21 Class Data

 Class Data implements the various functions needed for processing generic data

arrays used in various places throughout the fault simulator.

2.5.1 Computational Complexity

 The task of fault simulation presents formidable computational complexity for

even modest circuits. To illustrate this complexity, consider the operational amplifier

shown in Fig. 4.1, with only 11 components. If each component has two faults, an open

and a short, there are 22 potential faults for the circuit. Two hundred randomized netlist

files for each fault plus the fault-free file would result in (22+1)×200=4600 circuit files.

If each file is simulated at three frequencies, 10 waveforms, and two amplitudes there are

(22+1) ×200×3×10×2= 276,000 netlist files to be simulated.

2.5.2 Computational Time

 The foregoing complexity leads to long computational times. In experiments, the

operational amplifier circuit of the previous section has an average simulation time of

28

eight seconds based on current computing equipment. The computing environment

available is a Sun Microsystems SPARC Ultra 80 with four 450 MHz processors and 2

GB of main memory. If the 276,000 circuit files were simulated sequentially this would

amount to 25.5 days to simulate the circuits. Also, some waveforms take considerably

longer to simulate than others depending on faults and various other conditions such as

frequency and amplitude. Therefore, an approximation of the time for simulating the

operational amplifier of Fig.4.1 is nearly one month. The linear nature of the problem

dictates that doubling the number of components would double the simulation time,

meaning a circuit with 22 components would require nearly 2 months to simulate.

2.5.3 Parallel Processing

 The huge simulation times associated with even small circuits (as outlined in the

previous section) provides impetus to use parallel processing in the spice engine portion

of Fig. 2.3. This parallelization effort provided for a linear reduction in the amount of

time based on the number of parallel threads up to the number of processes on the parallel

processing machine. A simulation with two threads ran twice as fast with a simulation

with one thread. Experimental results show this to be true when simulating the BiQuad

filter shown in Fig. 3.7. The BiQuad filter with 15 components, 160 randomizations, 3

frequencies, and one waveform can be simulated in one day with 4 threads versus 3 days

with one thread on a 4-processor machine.

 The fault simulator was parallelized by making changes to the main executable

faultsim. Parallel threads were implemented with the functions fork() and wait() which

spawn parallel processes and close them when they are finished respectively. The

program allows a user definable number of parallel processes, threads to be used for a

29

simulation. The program then creates a process subdirectory for each thread. After the

parallel threads finish, the results are then collected and stored in a separate common

ORA subdirectory incrementally as the circuit simulations complete for all possible

combinations of TPG waveforms, faults, and parametric randomizations.

2.6 Faultsim

 Faultsim is the main executable of the fault simulator. Faultsim controls the flow

of Fig. 2.2 and Fig. 2.3. The only flow not controlled by faultsim is the post processing

executable anarun, the program that generates the histogram for the ORA results as the

last steps of Figs. 2.2 and 2.3.

��������	

�������	

�������	
�����

��
�������	
�������
��	����
��	����
�����
�����
������
������
�����

��	�
	�����

��	��
��	��

�
�������
��
���
�������
���������

�
��	����
��
��	���
��
���������
����
���
��������

��
���
��
��������
��
�
	��������
	������

�
��	����
��
��	���
��
�����	��������
���
�����

�
�����������
���
���
���
���
������������
�����
�����

�
�������������
���
���
���
���
������������
������
�����

�
�����
����
�������
��
�����
 ����

 �����������!���	��"#�����������������	��"#�

 ����
�����������!"����	��"#�������������

��
������$�
�����
��
����
��������
�����

�
��	�
����
�������
�	�������
��
�����

�
	�����
��
	��
��	���
���
�������
���� ��
���
�����
���

�
��	��
��
��	��
��
������������
������
�������
�����

�
��	���
��	���
��
�����������
��
�������
%&'

(��	���

�������	
�����	�������
)
)
*+
*,
*-
$
#�.
$�#
*#$
$
.
*

�

Figure 2.7 Faultsim help screen showing description of command-line parameters and
example command-line.

30

 Typing faultsim at the command line, as shown in Fig. 2.7, will display a help

screen that lists the command-line parameters and a brief explanation of each. Faultsim

is controlled by the following parameters: ckt.cir, numproc, numrand, inpos, inneg,

outpost, outneg, vbias, vamp, maxcpu, vomin, vomax, and numrep. The first parameter

ckt.cir is the name of the SPICE netlist file that must be in the directory in which faultsim

is running. The next parameter, numproc, is the number of processes, or threads that

faultsim will spawn in the simulation stage. The parameter numrand is the number of

randomizations for each fault and for the good circuit. The parameters inpos and inneg

are the node names of the positive and negative input voltages of the SPICE file. These

are used to merge the TPG waveforms (as SPICE commands) to the circuit input. The

parameters outpos and outneg are the positive and negative output nodes at which the

output will be taken and analyzed. The parameter vbias is the DC bias level of input TPG

waveform. The parameter vamp is the amplitude of the input TPG waveform to be

tested. The parameter maxcpu sets the timeout of a single ELDO simulation. This is

often necessary as certain faults will cause simulations not to converge or converge

slowly. The parameters vomin and vomax set the voltage range of the ADC in the BIST

framework. The last parameter, numrep, is the number of repetitions that the simulation

will process of each waveform (each repetition being 256 clock cycles).

31

CHAPTER 3: EXPERIMENTAL RESULTS

 The fault simulator results were compared to theoretical and experimental

hardware results for a BiQuad filter. The hardware BiQuad filter was designed and built

by Clark Hopper and Steven Tucker working under the direction of Dr. David Binkley.

In this chapter, the fault simulator is validated by comparison to theoretical

analysis (hand calculations) and experimental hardware. The focus is on validating the

ability of the simulator to predict hardware functionality and therefore a particular TPG

waveform is employed which may or may not be the best test vector for this circuit.

Nevertheless, the chosen waveform suffices for the purpose of validating the fault

simulator.

3.1 Biquadratic Filter Circuit

 The circuit used for the verification of the fault simulator was a Kerwon-

Huelsman-Newcomb biquadratic filter shown in Fig. 3.1[22]. The BiQuad filter has

band pass, low pass, and a high pass outputs. The cutoff frequency for all three filter

types is set by R and C from the components in feedback of the circuit shown in Fig. 3.1.

3107.6
015.10

11 ×=
×

==
µ

ω
kRCo (3.1)

32

Figure 3.1 BiQuad filter circuit used for benchmarking fault simulator
against hardware.

Figure 3.2 Frequency response of BiQuad filter shown in Fig. 3.1 with 1 kHz
cutoff frequency for high-pass, low-pass, and band-pass.

 Frequency

10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz
V(D11:1) V(R4:1) V(R3:1)

0V

200mV

400mV

600mV

800mV

33

The cutoff frequency for the experimental hardware is 1 kHz as shown by the frequency

response plot of Fig. 3.2. Fig. 3.2 is the frequency response of the circuit of Fig. 3.1,

showing the band-pass, low-pass, and high-pass cutoff frequency of 1 kHz. The

frequency response plot also shows the circuit has a gain of approximately one half for all

the pass band regions. The gain of the BiQuad filter is set by the components R1b and

R7 of the circuit shown in Fig. 3.1[22].

55.
1

20
5.7

2
2

1

2
2

3

2
=

+
Ω
Ω−=

+
−=

k
k

R
R

gain (3.2)

3.2 Modeling the BiQuad Efficiently

 The BiQuad filter circuit of Fig. 3.1 used to collect hardware experimental results

was implemented with AD820A/AD operational amplifier, shown in the operational

amplifier circuit of Fig. 3.3.

Figure 3.3 BiQuad hardware implementation using AD820 amplifier.

34

 The AD820A/AD contains 26 transistors each, making the fault simulation of all

internal components of the three AD820A/AD amplifiers far too time consuming.

Furthermore, the test lab would be unable to test faults at the transistor level for the

AD820A/AD package for comparison against fault simulator data. For these reasons, a

reduced order model was implemented to emulate the AD820/AD amplifier with a

voltage controlled voltage source (VCVS), a current limiting resistor, two diodes and a

five volt supply as shown in Fig. 3.4.

 In Fig. 3.4, the AD820A/AD is modeled by a (VCVS) along with diodes to cause

clipping, and resistive output impedance. In Fig. 3.4, the VCVS emulation of the

AD820/AD, the input signals are applied to the positive and negative input nodes of the

VCVS. The gain of the VCVS is set to 106. One problem with using the ideal VCVS is

the model has no mechanism for clipping, and so the diode network is added to induce

clipping. When the output voltage of Fig. 3.4 goes below -.5 volts, which is below the

Figure 3.4 Emulation of AD820A amplifier used in BiQuad circuit design
ideal voltage controlled voltage source, two diodes and output impedance

resistor.

35

threshold voltage for the diode, the diode to ground turns on and shorts the output of the

circuit to ground. When the output voltage goes above 5.5 volts and breaks the threshold

of the diode to the 5-volt supply, the diode limits the output of the E-source to the 5-volt

supply. These diodes keep the output of the model of the amplifier, in Fig. 3.4, in the

range of 0 to 5 V similar to the AD820A/AD. In future work the 5 V source will be

dropped to 4.5 V so the voltage clips at 5 V, similarly the grounded terminal should be

set to .5 V so the other rail clips at 0 V.

 Another modification to the circuit of Fig. 3.1 included adding an inverting VCVS

to the front-end of the BiQuad filter to account for the inverting amplifier used in the

experimental hardware, shown following the DAC in the schematic of Fig. 3.18. The

VCVS with gain of one, shown in Fig. 3.5, has the input signal connected to the positive

input node of the VCVS with the negative input of the VCVS tied to the 5 volt supply.

Figure 3.5 Inverting amplifier for input of BiQuad circuit used to translate 0

to 5 volt input to 5 to 0 volt output. Gain of VCVS is -1.

36

 The circuit of Fig. 3.5, inverts the input signal and adds a 2.5-V DC offset. When

the input is 0 volts the output becomes 5 volts, when the input is 5 volts the output will be

0. The negative terminal of the VCVS output is connected to ground and the final output

signal of Fig. 3.5 is taken from the positive output. The aforementioned changes to the

circuit are to expedite fault simulation by faster circuit simulation times and to provide

models representative of the behavior of the original hardware experimental circuit.

 Figure 3.18 contains hardware realization used the BIST system of Fig. 2.1. This

system was used to obtain the hardware experimental results and was also the model used

for the fault simulator. In Fig. 3.18, found at the end of the chapter, the full hardware

realization of the fault simulator containing the inverting amp of Fig. 3.5, the DAC and

ADC of Fig. 2.1, the BiQuad of Fig. 3.1, and the TPG discussed in section 2.3.3.

3.3 Theoretical Results (Hand Calculations)

 In this section, theoretical results are presented for several faults, so later these

results may be compared with simulation results to validate the fault simulator. In

particular, theoretical results are calculated for all six ORA metrics for three faults which

produced the same output condition. These three faults were selected because of the

simplicity of the hand calculations. The calculations illustrate ORA computation and

provide baseline theoretical values for the ORA metrics. For the purposes of discussion

and verification, the waveform employed for testing was the count-up waveform (Cup

waveform Appendix B) at 19.5kHz effective waveform frequency (5MHz TPG clock

frequency), 5 V amplitude, 2.5V DC offset, for one cycle (256 clock cycles) with no

hold-off for initialization. Unless otherwise indicated, the remainder of this chapter

37

discusses results for this TPG waveform with the aforementioned conditions and refer to

the high pass output of Fig. 3.1.

3.3.1 Calculation for Specific Fault Conditions

 For the case of the circuit of Fig. 3.1 without faults, a SPICE simulation showing

the input as the lower trace and high pass output as the upper trace is given in Fig. 3.6.

 Time

0s 100us 200us 300us 400us 500us 600us 700us 800us
V(E7:3)

0V

2.5V

5.0V

SEL>>

V(R3:1)
0V

2.5V

5.0V

 The saw-tooth waveform in the lower trace in Fig. 3.6 going from 0 to 5 volts at a

frequency of 19.5 kHz is the input signal to the BiQuad circuit of Fig. 3.1. The high pass

output is the saw-tooth signal in the upper trace of Fig. 3.6, with 2.5 V peak-to-peak

centered around 2.5 volts. The 2.5 V peak-to-peak value of the output is consistent with

the predicted gain of .5 for the BiQuad circuit. The DC offset of 2.5 in the upper trace of

Figure 3.6 SPICE simulation of circuit of BiQuad showing input (lower
trace) and output (upper trace). Transient output response due to initial

conditions is visible in the output plot.

38

Fig. 3.6 is also consistent with the expected operation of the BiQuad filter circuit shown

in Fig. 3.3, given the 2.5-V virtual ground shown biasing the filter. Although a high-pass

circuit should ideally have no DC offset, it can be seen in Fig. 3.6 that the output of the

circuit is initially offset above the 2.5 V DC virtual ground, and then levels out centered

at 2.5 V around 750µs. This can be attributed to the transients of the circuit, and these

effects are later considered in section 3.6 when comparing the ORA metrics with the

experimental hardware. Since the simulation was run with no hold off and for only one

cycle, these transient effects can be expected to contribute to the measured ORA metrics.

 Table 3.1 lists the faults for the BiQuad circuit of Fig. 3.3. From the fault list

shown in Table 3.1, three faults were selected that give the output condition of a constant

2.5 volts, as in Fig. 3.7.

 Time

0s 100us 200us 300us 400us 500us 600us 700us 800us
V(E7:3)

0V

2.5V

5.0V

SEL>>

V(D2:1)
0V

2.5V

5.0V

Figure 3.7 SPICE plot showing input (lower trace) and output (upper trrace)

of faulty BiQuad circuit with 2.5-V DC output condition.

39

The three faults that produce this 2.5-V constant output condition are R3 short, R2 short,

and R1b short shown in Table 3.2 below.

Table 3.1
Fault List for BiQuad filter circuit simulation

Fault List
Component Fault

R3 Open
R3 Short
R4 Open
R4 Short
R5 Open
R5 Short
R6 Open
R6 Short
R2 Short
R7 Open
R7 Short
C1 Open
C2 Open

Table 3.2
List of Specific Components and Faults for ORA Confirmation were Vout is a constant 2.5

VDC
Component Fault Output Condition

R2 Short 2.5 volts
R3 Short 2.5 volts
R1b Short 2.5 volts

 The SPICE simulation of the three fault conditions shown in Table 3.2 produced

the output (2.5-VDC) shown in the upper trace of Fig. 3.7, with a saw-tooth input shown

in the lower trace. These faults were chosen because they offer easily calculated ORA

metrics.

40

3.3.1.1 Sout Floating Point Calculation

 The cases of Table 3.2 with an output voltage stuck at 2.5 V and with the input

going from 0 to 5 volts over 256 clock cycles is a useful condition for validation since it

provides simple hand calculations. In this case, Sout becomes:

 6405.22565.2][
255

0

1

0

=×=== ��
=

−

= n

N

n
out nVoutS .

 For more complex signals, the summation can be viewed as an integral or area

under the Vout curve. For the present example, the Sout metric is analogous to the area of

the rectangle (i.e. the integral of the rectangle) shown in Fig. 3.8. Given that the result is

5V

2.5V

256 clock cycles

256 clock cycles * 2.5 V = 640 for Ssum ORA metric

Area of Summation

Figure 3.8 Illustration showing area corresponding to the fault for 2.5-V
output condition of Fig. 3.7 over 256 clock cycles for computing Sout metric.

The area is 2.5x256=640.

for one TPG waveform cycle only (256 clock cycles), Sout would equal the area of a

41

rectangle with base=256 clock cycles and height=2.5 V with area 256x2.5=640. This is

the area of the rectangle in Fig. 3.8.

3.3.1.2 Sdel Floating Point

 The cases of Table 3.2 with an output voltage stuck at 2.5 V are used for

Sdel since it provides simple hand calculations. The Sdel metric subtracts the voltage of the

input from the output voltage at each clock cycle and sums the result over the number of

specified clock cycles. Only one cycle of the TPG waveform (256 clock cycles) is used

for the simulation under consideration. In the upper left of Fig. 3.9, Vout is represented

as a 2.5-VDC constant for 256 clock cycles. In the upper right, Vin is represented as a

ramp from 0 to 5 volts for those same 256 clock cycles. At the bottom is the difference

of the upper two figures representing Vout –Vin for same 256 clock cycles. In this case,

Sdel becomes:

 () ���
==

−

=
=−×=�

�

�
�
�

� −=−=
255

0

255

0

1

0

0
255
5

5.2256
255
5

5.2][][
nn

N

n
inout

nn
nVnVdelS .

For more complex signals, the summation can be viewed as an integral or area under the

Vout - Vin. For the present example, the Sdel metric is analogous to the area under the

curve at the bottom of Fig. 3.9. Given that there is equal positive and negative area under

the curve of Fig. 3.9, the net result should be at or near 0.

3.3.1.3 Smag Floating Point

 The cases of Table 3.2, with an output voltage stuck at 2.5 V, are used for Smag

since it provides simple hand calculations. The Smag metric sums the absolute value of

the difference of the input subtracted from the output. Only one cycle of the TPG

waveform (256 clock cycles) is used for the simulation of discussion. In the upper left

42

of Fig. 3.10 Vout is represented as a 2.5-VDC constant for 256 clock cycles. In the upper

right, Vin is represented as a ramp from 0 to 5 volts for those same 256 clock cycles. In

the lower left is the difference of the upper two figures representing Vout –Vin for same

256 clock cycles. In the lower right is the magnitude of the difference of the upper two

figures representing |Vout –Vin| for same 256 clock cycles.

In this case, Smag becomes:

320
255
5

5.2][][
255

0

1

0

=−=−= ��
=

−

= n

N

n
inout

n
nVnVmagS .

For more complex signals, the summation can be viewed as an integral. For the present

example, the Smag metric is analogous to the area of the two triangles in the lower right of

Fig. 3.10. Given that the result is for one saw-tooth cycle only, Smag

Net Result = 0

Figure 3.9 Illustration showing area corresponding to the fault for 2.5-V
output condition over 256 clock cycles for computing Sdel metric. The top

left plot is the output waveform, the top right plot is the input waveform, and
the bottom waveform is the resultant subtraction of the two upper plots. The
lower plot with equal areas above and below the time axis have a net result

of zero.

5V

2.5V

5V

2.5V

Vout Vin

=
-2.5V

2.5V

256 clock cycles 256 clock cycles

256 clock cycles

Equal Areas

43

would equal the area of the two triangles, with base=128 clock cycles and height=2.5

volts for each triangle, with area 128x2.5/2=160 for a total area of 320 in both triangles.

3.3.1.4 Summary of Floating Point Calculations

 Table 3.3 summarizes the theoretical predicted values for the three floating point

ORA metrics Sout, Sdel, and Smag for the case of Table 3.2 where the output is stuck at

2.5V.

Table 3.3
The theoretical floating point values for ORA metrics Sout, Sdel, and Smag for the fault in

Table 3.2 with 2.5-VDC output with saw-tooth input over one cycle
ORA metric Expected Floating Point Value

Sout 640
Sdel 0
Smag 320

5V

2.5V

Vout Vin

2.5V

-2.5V

5V

2.5V

=

2.5V

-2.5V

Net Result = 320

256 clock cycles 256 clock cycles

256 clock cycles 256 clock cycles

Equal Areas

Figure 3.10 Illustration showing area summed for 2.5-V output condition
over 256 clock cycles for Smag metric. Top left is output waveform, top right
is input waveform, bottom left is result of subtraction of output from input,

and bottom right is magnitude of bottom left.

44

3.3.2 Digital ORA Metrics

 Whereas the floating point ORA metrics of the previous sections are useful for

investigation, the digital ORA metrics S16out, S16del, and S16mag are used for direct

comparison between the fault simulator and the experimental hardware. The BIST

system under consideration has an ADC and a DAC of 8-bits, and accumulator of 16-bits,

which performs the summation of Table 2.2. The ADC and the DAC analog voltage

ranges are 0 to 5 volts, with 00 hex corresponding to 0 V and FF hex corresponding to

5V.

 The test waveform of one cycle of cup was selected because it would not

overflow the accumulator regardless of the output voltage. In the worst case, one would

have 256 clock cycles of FF hexadecimal ADC output added in the accumulator. This

would result in a final accumulator value of FFFF in hexadecimal. For the case of the

mid rail voltage of 2.5 V(as in the faults of Table 3.2), or a 7F in hexadecimal, times 256

clock cycles gives 7F00, or 32767 in decimal, which is half of the maximum value of the

accumulator. Therefore, the accumulator will not overflow for the cases under

consideration.

3.3.2.1 S16out Digital Value

 The cases of Table 3.2 with an output voltage stuck at 2.5 V are used to calculate

S16out since it provides simple hand calculations. The S16out metric adds the digital output

voltage at each clock cycle and sums the result over the number, N, of specified clock

cycles. Only one cycle of the TPG waveform (256 clock cycles) is used for the

simulation under discussion. In Fig. 3.8, the 2.5-VDC output Vout would correspond to

an ADC digitized value of 7F hexadecimal, or 127 decimal. In this case, S16out becomes:

45

32512))127((]))[((16
65536

256

255

065536

256

1

0

=��
�

�
��
�

�
�
�

�
�
�

�=��
�

�
��
�

�
�
�

�
�
�

�= ��
=

−

= n

N

n
out nVoutS ,

where 32512 decimal is 7F00 hexadecimal. This can also be confirmed by summing 7F

hexadecimal 256 times decimal to get 7F00 hexadecimal, or 32512 decimal.

3.3.2.2 S16del Digital Value

 As in the calculation of S16out, the cases of Table 3.2 with an output voltage stuck

at 2.5 V are used to calculate S16del since it provides simple hand calculations. The S16del

metric subtracts the digitized voltage of the input from the digitized high pass output

voltage at each clock cycle and sums the result over the number, N, of specified clock

cycles. Only one cycle of the Cup TPG waveform (256 clock cycles) is used for the

simulation under discussion. In the upper left of Fig. 3.9, Vout is represented as a 2.5-

VDC constant, corresponding to digitized value of 7F hex, for 256 clock cycles. In the

upper right of Fig. 3.9, Vin is represented as a ramp as 5 volt for those same 256 clock

cycles, corresponding to a ramp from 00 hexadecimal to FF hexadecimal after

digitization. The subtraction is a 1’s compliment subtraction with Vout and Vin unsigned

8-bit and with the output 1’s compliment signed 16-bit. In this case S16del becomes:

0))127((]))[][((16
65536

65536

255

065536

65536

1

0

=��
�

�
��
�

�
�
�

�
�
�

� −=��
�

�
��
�

�
�
�

�
�
�

� −= ��
=

−

=

nnVnVdelS
n

in

N

n
out .

The digital result of 0 for S16del corresponds to the analog answer of 0 for Sdel.

The digital method of subtraction varies from the floating point in that the subtraction is

done using the ones complement and the input values Vout and Vin are unsigned.

46

3.3.2.3 S16mag Digital Values

 The cases of Table 3.2 with an output voltage stuck at 2.5 V are used to calculate

S16mag since it provides simple hand calculations. The S16mag metric at each clock cycle

subtracts the digitized voltage of the input from the digitized high pass output voltage,

and then takes the absolute value and sums the result over the number, N, of specified

clock cycles. Only one cycle of the TPG waveform (256 clock cycles) is used for the

simulation of discussion. The digitization of the corresponding signals in Fig. 3.10

follows in the manner as digitization of Fig. 3.9 described for S16del in the prior section.

Again, the subtraction is a 1’s compliment subtraction with Vout and Vin unsigned 8-bit

and with the output 16-bit 1’s compliment signed. In this case, S16mag becomes:

16256|))127((||))][][((|16
65536

65536

255

065536

65536

1

0

=��
�

�
��
�

�
�
�

�
�
�

� −=��
�

�
��
�

�
�
�

�
�
�

� −= ��
=

−

=

nnVnVmagS
n

in

N

n
out .

The digital result of 16256 for S16mag corresponds to the analog answer of 320 for

Smag. The digital method of subtraction varies from the floating point in that the

subtraction is done using 16-bit 1’s complement, the input values of Vout and Vin are 8-bit

unsigned and the output is 16-bit signed. The value 16256 for S16mag should be half of the

S16out value of 32512 as evident by comparing Figs. 3.9 and 3.10.

3.3.2.4 Summary of Digital Calculations

 Table 3.4 summarizes the theoretical predicted values for the three digital ORA

metrics S16out, S16del, and S16mag for the case of Table 3.2 where the output is stuck at

2.5V.

47

Table 3.4
 The theoretical digital values for ORA metrics S16out, S16del, and S16mag for the fault in

Table 3.2 with 2.5-VDC output with saw-tooth input over one cycle
ORA Metric Expected Digital Value (decimal)

S16out 32512
S16del 0
S16mag 16256

3.4 Simulation Data for BiQuad Filter Circuit

 The BiQuad circuit of Fig. 3.1 was simulated using the reduced order model of

Fig. 3.3 (replacing the operational amplifiers with the reduced order models of Fig. 3.4)

for comparison against the theoretical values from section 3.3. In section 3.5, simulation

results are compared to hardware experimental results.

In the simulations, the BiQuad filter circuit of Fig. 3.3 was simulated with count-

up(Cup) ramp waveform with no initialization cycles and one repetition of the TPG

pattern (256 clock cycles). The simulation was run for 160 randomizations per fault and

for the fault-free circuits. The fault simulation was executed with the following

command line:

faultsim biquad.cir 8 160 11 0 2 0 2.5 5 60 0.5 4.5 1

In this command line, biquad.cir is the circuit SPICE file for the reduced order

model version of the circuit of Fig. 3.3. The second field, numproc=8, is the number of

parallel processes that are forked to run in parallel on a multi-cpu machine. The third

field, numrand=160, is number of randomizations due to parametric variations of normal

components that are done per fault. In the fourth and fifth fields, inpos=11 and inneg=0,

are positive and negative differential input nodes in the SPICE file. In the sixth and

seventh fields, outpos=2 and outneg=0 are positive and negative differential output nodes

for the SPICE file. The eighth field, vbias=2.5 is the TPG waveform DC bias, where

48

inpos=vbias+(vamp/2), inneg=vbias-(vamp/2) and if vbias=0, the input is true floating

differential input. The ninth field, vamp=5, is the test pattern amplitude in volts. The

tenth field, maxcpu=60, is maximum number cpu seconds allowed per SPICE run. The

eleventh and twelfth fields, vomin=.5 and vomax=4.5, is the differential output voltage

range where 00 hexadecimal corresponds to vomin and FF hexadecimal corresponds to

vomax for ADC converter of Fig. 2.1. The last field, numrep=1, is the number or

repetitions to execute TPG waveform (1 repetition= 256 clock cycles). By default, three

frequencies are simulated and the hold-off for collecting ORA data is 0. In addition,

waveforms are hard-coded in faultsim at this present version of the software. The

waveforms and frequencies must be selected before recompiling the faultsim executable.

After completion of fault simulation, the raw ORA data is contained in the ORA

files. The ORA files are then processed in a post-processing executable named anarun.

The post-processing takes the ORA files and generates excel spreadsheets for histograms

of the six ORA metrics for each TPG waveform. The post-processing program also

calculates the mean, variance for each fault for the six analog and digital ORA metrics

Sout, Sdel, Smag, S16out, S16del, and S16mag.

3.4.1 Analog Results for Fault Simulator

 In this section, simulation results for the analog metrics, Sout, Sdel, and Smag, are

compared against the theoretical results. The histogram for the Sout analog output metric

is shown in Fig. 3.11. In Fig. 3.11, the histogram for a fault-free unit is shown as a solid

line and the faulty circuit histogram is shown as a dotted line. The faulty circuit

histogram is a composite of all the faults formed by summing all the faulty histograms

and dividing by the number of faulty histograms. (Histograms showing good circuits and

49

a single fault, for all faults listed in Table 3.1, can be found Appendix F.) The vertical

axis gives the number of units falling within a certain ORA metric range bin and the

horizontal axis is the ORA metric value, i.e., Sout. This convention will be used for all

histograms contained hereafter. The figure shows faulty circuits clustered around

Sout=640 mark. These faulty circuits correspond to the three resistive shorts given in

Table 3.3 that produce the mid-rail DC voltage of 2.5 volts.

 The histogram of Fig. 3.11 also shows a cluster of faults that fall in the same

range as the good circuits. Because faults in many components affect the output of the

count-up waveform only slightly, these other faulty circuits have Sout values that are

clustered around the fault-free circuit histograms. These faults, which affect the count-

up output only slightly, are listed in Table 3.5. Although these faults are not detectable

with the present waveform, previous work on the BiQuad filter has shown that these

faults can be detected with other waveforms [28].

-5

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800

Sout ORA Metric Value

N
um

be
r
o
f U

ni
ts

Fault Free files Faulty Files

Figure 3.11 Fault simulator results for analog Sout ORA metric for BiQuad
filter at 5 MHz clock frequency (19.5 kHz effective waveform frequency),
Cup waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range. The

dotted histogram is a composite of all faults rescaled and normalized relative
to the solid histogram which is the histogram for fault-free circuits.

50

For the cases of Table 3.2 that were used to calculate theoretical results, Table 3.6

shows percent error between theoretical and simulated results for analog Sout. In Table

3.6, the first column lists the fault, the second column gives the theoretical value of Sout,

and the third column gives the mean value of the simulated Sout for 160 randomized

circuits for that particular fault (160 randomizations set by the faultsim command line).

In Table 3.6, the percent error is calculated by dividing the difference between the mean,

µ, in column two and the theoretical value, t, in column one and dividing the theoretical

value, t, in column one, and finally multiplying by 100 to obtain the percentage. This

calculation is shown in equation 3.3 below.

100×−=
t

t
e

µ (3.3)

 Table 3.6 shows, for the analog Sout metric, that the fault simulator results are

within 5 percent of the theoretical results.

Table 3.5

Faults with only slight effect on the output of BiQuad filter for count-up waveform at
19.5 kHz

Component Fault
R3 Open
R4 Open
R4 Short
R5 Open
R5 Short
R6 Open
R6 Short
R7 Open
R7 Short
C1 Open

51

Table 3.6
Sout comparison of analog theoretical values against fault simulator results

Fault Theoretical Value of Sout Fault Simulator mean value % error(eq 3.3)
R2 short 640 665.629 4.1
R3 short 640 665.658 4.1
R1b short 640 665.786 4.1

The histogram for the Sdel analog output metric is shown in Fig. 3.12. In Fig.

3.12, the fault-free circuit histogram is shown as solid line and the composite faulty

circuit histogram is shown as a dotted line. The faulty circuit histogram is a composite of

all the faults formed by summing all the faulty histograms and dividing by the number of

faults (See Appendix F for histograms of single faults and fault-free circuit for each

fault). The vertical axis gives the number of units within a certain ORA metric range bin

and the horizontal axis is the ORA metric value, Sdel. The figure shows a cluster of faulty

circuits cluster around Sdel=0. These faulty circuits correspond to the three resistive

shorts given in Table 3.3 that produce the mid-rail DC voltage of 2.5 volts.

-5

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000

Sdel ORA Metric Value

N
U
m

be
r
of

 U
ni

ts

Fault Free Data Faulty Circuits

Figure 3.12 Fault simulator results for analog Sdel ORA metric for BiQuad
filter at 5 MHz clock frequency (19.5 kHz effective waveform frequency),
Cup waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range. The

dotted histogram is a composite of all faults rescaled and normalized relative
to the solid histogram, which is the histogram for fault-free circuits.

52

Table 3.7 shows the error for the theoretical values for the Sdel metric. The

percent error calculation in equation 3.3 is not appropriate for Table 3.7 since the

theoretical value is 0. Therefore, the error is simply defined as the difference.

The histograms in Fig. 3.12 also show the overlap of faults listed in Table 3.5

with the fault-free histogram, corresponding to undetectable faults for this waveform.

 Finally, the histogram for the Smag analog output metric is shown in Fig. 3.13. In

Fig. 3.13, the fault-free circuit histogram is shown as solid line and the composite faulty

circuit histogram is shown as a dotted line. The vertical axis gives the number of units

within a certain ORA metric range bin and the horizontal axis is the ORA metric value,

Smag. The figure shows a cluster of faulty circuits around Smag=320. Unlike Sout and Sdel,

it is not possible to resolve a separate cluster corresponding only to the three faults given

in Table 3.3 that produce the mid-rail DC voltage of 2.5 V.

 Although the histogram does not show a separate cluster corresponding to the

theoretical results for the faults of Table 3.3, comparisons between theoretical and

simulated values may yet be made. Table 3.8 shows that the simulated values for the

Smag ORA metric for analog data have approximately 1 percent error from the theoretical

value. The percent error calculation in Table 3.8 uses equation 3.3, with corresponding

µ, and t.

Fault Theoretical value of Sdel Fault Simulator mean value Error
R2short 0 47.97 47.97
R3short 0 48.00 48.00
R1bshort 0 48.12 48.12

Table 3.7
Sdel comparison of analog theoretical values against fault simulator results

53

-10

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

Smag ORA Metric Value

N
um

be
r

o
f U

n
its

fault free circuits faulty circuits

Table 3.8
Smag analog theoretical values compared with fault simulator results

Fault Theoretical Value of Smag Fault Simulator mean value % error(eq3.3)
R2short 320 322.65 .80
R3short 320 322.85 .80
R1bshort 320 322.81 .80

3.4.2 Digital Results for Fault Simulator

 In this section, simulation results for the digital ORA metrics S16out, S16del, S16mag

are compared against theoretical results. The histogram for the S16out digital output

metric is shown in Fig. 3.14. In Fig. 3.14, the fault-free circuit histogram is shown as

solid line and the faulty circuit histogram is shown as a dotted line. The faulty circuit

histogram is a composite of all the faults formed by summing all the faulty histograms

and dividing by the number of faults. The vertical axis gives the number of units within a

certain ORA metric range bin and the horizontal axis is the decimal ORA metric value,

Figure 3.13 Fault simulator results for Analog Smag ORA metric for BiQuad
filter at 5 MHz clock frequency (19.5 kHz effective waveform frequency),
Cup waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range. The

dotted histogram is a composite of all faults rescaled and normalized relative
to the solid histogram, which is the histogram for fault-free circuits.

54

S16out. This convention will be used for all histograms contained hereafter. The figure

shows a cluster of faulty circuits around S16out=34000. These faulty circuits correspond

to the three resistive shorts given in Table 3.3 that produce the mid-rail DC voltage of 2.5

volts. The histogram also shows a cluster of faults that fall in the same range as the

fault-free circuits. Because faults in many components affect the output of the count-up

waveform only slightly, many faulty circuit S16out value fall within the cluster of the fault-

-10

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000 60000

S16out ORA Metric Value

N
u
m

b
er

 o
f U

ni
ts

Fault Free Circuits Faulty Circuits

free circuit histograms. These faults, which affect the count-up output only slightly, are

listed in Table 3.5.

For the cases of Table 3.2 that were used to calculate theoretical results, Table 3.9

shows percent error between theoretical and simulated results for S16out. In Table 3.9, the

Figure 3.14 Fault simulator results for analog S16out ORA metric for BiQuad
filter at 5 MHz clock frequency (19.5 kHz effective frequency), Cup

waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range. The dotted
histogram is a composite of all faults rescaled and normalized relative to the

solid histogram, which is the histogram for fault-free circuits.

55

first column lists the fault, the second column gives the theoretical value of S16out and the

third column gives the mean of the simulated value of S16out for 160 randomized circuits,

for that particular fault (160 randomizations set by the faultsim command line). In Table

3.9, the percent error is calculated by using equation 3.3. Table 3.9 shows that the

simulated value of S16out metric is less than 5 percent form the theoretical values.

The histogram for the S16del digital output metric is shown in Fig. 3.15. In Fig. 3.15, the

fault-free circuit histogram is shown as solid line and the composite faulty circuit

histogram is shown as a dotted line. The faulty circuit histogram is a composite of all the

faults formed by summing all the faulty histograms and dividing by the number of faulty

histograms. The vertical axis gives the number of units within a certain ORA metric

range bin and the horizontal axis is the ORA metric value, S16del. The histogram of Fig.

3.15 shows a cluster of faulty circuits around S16del=2500. These faulty circuits

correspond to the three resistive shorts given in Table 3.3 that produce the mid-rail DC

voltage of 2.5 volts.

 Table 3.10 shows the error relative to the theoretical values for the simulated

S16del metric. The percent error calculation in equation 3.3 is not appropriate for Table

3.10 since the theoretical value is 0. Therefore, the error is defined as the difference. The

two histograms in Fig. 3.15 also show overlap of faults listed in Table 3.5, again

indicating undetectable faults for this waveform.

Fault Theoretical Value of S16out Fault Simulator mean value % error(eq 3.3)
R2short 32512 34048 4.72
R3short 32512 34048 4.72
R1bshort 32512 34048 4.72

Table 3.9
S16out digital theoretical values against fault simulator results.

56

-10

0

10

20

30

40

50

60

0 5000 10000 15000 20000 25000

S16del ORA Metric Value

N
um

be
r

of
 U

ni
ts

Fault Free Circuits Faulty Circuits

 The histogram for the S16mag digital output metric is shown in Fig. 3.16. In Fig.

3.16, the fault-free histogram is shown as solid line and the composite faulty circuit

histogram is shown as a dotted line. The faulty circuit histogram is a composite of all the

faults formed by summing all the faulty histograms and dividing by the number of faulty

histograms. The vertical axis gives the number of units with a certain ORA metric range

bin and the horizontal axis is the ORA metric value, S16mag.

Fault Theoretical Value of S16del Fault Simulator mean value error
R2short 0 2532 2532
R3short 0 2532 2532
R1bshort 0 2532 2532

Table 3.10
S16del digital theoretical values compared with fault simulator results

Figure 3.15 Fault simulator results for analog S16del ORA metric for BiQuad
filter at 5 MHz clock frequency (19.5 kHz effective frequency), Cup

waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range. The dotted
histogram is a composite of all faults rescaled and normalized relative to the

solid histogram, which is the histogram for fault-free circuits.

57

-10

0

10

20

30

40

50

60

0 5000 10000 15000 20000 25000

S16mag ORA Metric Value

N
um

be
r

of
 U

ni
ts

Fault Free Circuits Faulty Circuits

The histogram of Fig. 3.16 shows a cluster of faulty circuits around S16mag=16346.

Unlike S16out and S16del, it is not possible to resolve a separate cluster corresponding only

to the three resistive shorts given in Table 3.3 that produce the mid-rail DC voltage of 2.5

V, since the values of faulty circuits are so close to the values of fault-free circuits.

 Table 3.11 shows the error for the S16mag metric of the fault simulator is

approximately 1 percent relative to the theoretical value. The percent error calculation in

Table 3.11 uses equation 3.3, with corresponding µ, and t.

In Figs. 3.11 through 3.16, it can be seen that the fault-free circuit histograms and

the faulty circuit histograms are often times very close to each other for each of the six

analog and ORA metrics. The histograms of Figs. 3.11 through 3.16 show that with the

Figure 3.16 Fault simulator results for analog S16mag ORA metric for BiQuad
filter at 5 MHz clock frequency (19.5 kHz effective frequency), Cup

waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range. The dotted
histogram is a composite of all faults rescaled and normalized relative to the

solid histogram, which is the histogram for fault-free circuits.

58

count-up 19.5 kHz, 5 V peak-to-peak TPG waveform many faults are undetectable for

this the ORA metric and TPG waveform. The faults listed in Table 3.5 are undetectable

with the TPG waveform. However, they may be detectable with other waveforms and are

therefore classified as potentially detectable.

Table 3.11

S16mag digital theoretical values against fault simulator results
Fault Theoretical Value Fault Simulator mean value % error(Eq.3.4)

R2short 16256 16346 0.5
R3short 16256 16346 0.5
R1bshort 16256 16346 0.5

3.5 Comparison with Experimental Hardware

In addition to confirming the results of the fault simulator against theoretical

results in the previous section, this section compares fault simulator results to

experimental hardware results. The experimental data was produced by Jason Morton in

the VLSI-FPGA Design and Test Lab under the direction of Dr. Charles Stroud of the

University of North Carolina at Charlotte. This hardware experimental data was

generated using the BiQuad filter (detailed schematic included in Figs. 3.1 and 3.3). The

VLSI-FPGA Design and Test Lab used the BIST system of Fig. 2.1, designed and built at

the VLSI-FPGA Design and Test Lab, was implemented per Fig. 3.18. Faults are

injected into the circuit of Fig. 3.3 by switches in series for opens, and by short-circuit

jumpers in parallel for shorts, for the faults listed in Table 3.1. The hardware does not

produce the ORA metric for the S16del, so the comparison of the hardware to the fault

simulator will be limited to the S16out and S16mag ORA metrics.

 Table 3.12 is a summary of the results for the ORA metric S16out for the fault

simulator and the hardware. Table 3.12 shows the percent error, as defined in equation

59

3.4 below, between the results for the fault simulator and the experimental hardware

results collected by Jason Morton from the VLSI-FPGA and Test Lab working under the

direction of Dr. Charles Stroud.

100×
−

=
simulator

simulatorhardwaree
µ

µµ (3.4)

Table 3.12

Comparison of experimental hardware and simulations for S16out ORA metric showing
difference between means and percent difference

Faults
Fault µ
 variance µ
 variance µ difference %error of

nofaults 42275 16.97 287.981 45420 783.96 614593 -3145 -6.92
R2short 35512 0 0 34048 0.3405 0.1159 1464 4.30
R3open 60830 2.07 4.2849 49726 856.7 733935 11104 22.33
R3short 29602 97 9409 34048 0.3405 0.1159 -4446 -13.06
R4open 43203 6.39 40.8321 45451 775 600625 -2248 -4.95
R4short 35000 4991.7 2.5E+07 33974 13 169 1026 3.02
R5open 43166 31.3 979.69 46654 193 37249 -3488 -7.48
R5short 32841.9 5881.9 3.5E+07 34048 0.3405 0.1159 -1206.1 -3.54
R6open 41385 10.5 110.25 45289 722 521284 -3904 -8.62
R6short 29818 5370 2.9E+07 49001 800 640000 -19183 -39.15
R7open 29600 5039 2.5E+07 49492 762 580644 -19892 -40.19
R7short 41375 11.3 127.69 45325 13.95 194.6 -3950 -8.71
C1open 32847 49 2401 34048 0.3405 0.1159 -1201 -3.53
C2open 34350 4610 2.1E+07 34048 0.3405 0.1159 302 0.89

S16out, 5 Megahertz clock, Count-up waveform

Software ResultsHardware Results Comparison

 Table 3.12 shows error ranging from less than 1 percent to 40 percent. The

results for the fault simulator tend to agree with the hardware experimental results for

most faults, with only a few faults having considerable differences.

 Table 3.13 contains the same data as Table 3.12 except for the S16mag ORA metric.

The error in this Table can be seen to vary over a wider range than Table 3.12. The range

of error for the ORA metric S16mag ranges from a half percent to 75 percent.

60

Table 3.13
Comparison of experimental hardware and simulations for S16mag ORA metric showing

difference between means and percent difference

Faults
µ
 variance µ
 variance µ difference %error of

nofaults 13191 24.1 580.81 15913 213.84 45727.5 -2722 -17.11
R2short 16257 0 0 16346 0.1634 0.0267 -89 -0.54
R3open 25410.7 3705.83 13733176 18212 851 724201 7198.71 39.53
R3short 16998.2 132.93 17670.38 13346 0.1634 0.0267 3652.23 27.37
R4open 13485.5 5.88 34.5744 15893 241 58081 -2407.5 -15.15
R4short 28059 753.32 567491 16370 139.23 19385 11689.01 71.41
R5open 13233 20.7 428.49 16177 353.84 125203 -2943.99 -18.20
R5short 28919.4 12.097 146.3374 16346 0.1634 0.0267 12573.42 76.92
R6open 14203.3 7.79 60.6841 15871 213 45369 -1667.66 -10.51
R6short 13191.8 34.57 1195.085 17530.9 740 547600 -4339.15 -24.75
R7open 11580.6 1158 1340964 17987 828 685584 -6406.42 -35.62
R7short 14200.8 5.84 34.1056 15883 218 47524 -1682.19 -10.59
C1open 18465 96 9216 15908 221 48841 2557 16.07
C2open 18685 78 6084 16346 0.163 0.02657 2339 14.31

S16mag, 5 Megahertz clk, Count-up waveform

Fault Simulator ResultsHardware Results Comparison

3.6 Good Circuit Result Confirmation

 In addition to confirming the results of the fault simulator against theoretical

results for the specific fault conditions of Table 3.2, comparisons were made for a fault-

free circuit. This section compares the fault-free circuit ORA data, comparing simulation

results for the fault-free circuit to hardware results for the fault-free circuit.

 A high-pass filter, such as the BiQuad filter should by definition have no DC

offset in the output. For the BiQuad circuit of Fig. 3.1, the high pass output should be

symmetrical about the 2.5-VDC virtual ground of the output. In this event, S16out and Sout

ORA metrics would both be expected to have ORA values for good circuits that would be

effectively the same as a 2.5-Vconstant DC output.

 Transient effects that skew ORA metric results from their expected values are

present in the hardware and simulation. Fig. 3.17 shows an oscilloscope trace capturing

61

the first cycles of the cup TPG waveform at 5 MHz clock frequency with 5 V peak-to-

peak and 2.5 V offset in the hardware system. The upper trace of Fig. 3.17 is the input to

the hardware BiQuad circuit, after inversion of the DAC output by the inverting amplifier

of Fig. 3.18. The lower trace is the high pass output of the hardware BiQuad circuit.

The oscilloscope trace of Fig. 3.17 was taken by the VLSI-FPGA Design and Test

Lab by Steve Tucker and Jason Morton. The behavior of the output in the hardware

circuit shown in Fig. 3.17 matches roughly the SPICE simulation of Fig. 3.6. The

oscilloscope’s lower trace shows the high pass BiQuad output starting higher than 2.5

VDC, going below 2.5 VDC, and then settling out to the expected 2.5 V virtual ground.

Therefore, this transient is present in both the hardware and simulation, and should also

influence the ORA results for both the fault simulator and the hardware experiments.

Figure 3.17 Oscilloscope plot showing presence of transient effect on 5MHz
Cup waveform with 5Vpp input on BiQuad filter (compare to SPICE plot

Fig. 3.6). Upper trace is 0 to 5 V Cup input TPG waveform (after inverting
amp of Fig. 3.5), lower trace is high pass output showing transient behavior

within first 4 or 5 cycles of saw-tooth waveform.

62

As is evident by inspection of the histograms of Figs. 3.11 and 3.14, the fault-free

data is clustered around a value that is shifted up form the corresponding theoretical

values of Sout=640 and S16out=32512 decimal. From Fig. 3.17, the high pass output in the

lower trace is initially shifted up by approximately 1 volt, corresponding to a shift in Sout

of 256×1=256 and corresponding to a shift of S16out of 33 hex times FF hex equals 32CD

hex or 13005 decimal. And so, this would result in shifted histograms for a Sout and S16out

centered at 640+256=856 and 32512+13005=45517. And so, the fault-free Sout

histogram of Fig. 3.11 is centered near 870, and the fault-free histogram for Fig. 3.14 is

centered around 46,000.

3.7 Conclusion

 In conclusion, the fault simulator has been validated against both theoretical and

experimental hardware results for a simple waveform. For the simple faults which

permit theoretical analysis, the simulator data was close to the theoretical data for Sout. In

addition, S16out ORA data of Table 3.12 shows good agreement between the simulator

results and the experimental hardware results for many faults. It is not clear, at present,

the cause of the discrepancies between the simulator results and the experimental

hardware results for S16mag in Table 3.13. Nevertheless, there is good agreement for

several faults between the simulator results and the experimental hardware results for

S16mag in Table 3.3.

63

64

CHAPTER 4: POTENTIAL FUTURE DIRECTIONS

 One potential area of future investigation includes reducing the margin of error

between the fault simulator and the experimental hardware results of Tables 3.12 and

3.13. In addition, more waveforms from Appendix B could be simulated and checked.

 Other potential areas of future work include methods of speeding up the selection

of TPG waveforms and improving the methods by which TPG waveforms are selected.

Section 4.1 suggests possible ways to evaluate TPG waveforms for mixed signal BIST

Microsystems. Section 4.2 addresses a second area of future investigation, issues of fault

coverage for the BiQuad. Then section 4.3 considers receiver operating characteristics as

a tool in selecting metric thresholds. Finally section 4.4 considers Bhattacharyya

methods for selecting the most promising TPG waveforms to speed up the simulator.

4.1 Speeding up Fault Simulation

 The task of choosing the best TPG waveform and ORA metric with the maximum

fault coverage requires the simulation of many different TPG waveforms on many

versions of a circuit. To illustrate the number of combinations, consider a very simple

circuit with 11 components to demonstrate the time requirements of such a simulation. A

circuit with 11 components will have 22 different faults, assuming two hard faults per

component. Also assume each circuit with and without faults is randomized 250 times to

simulate normal component variations. In addition, let there be 14 TPG waveforms at

three frequencies and three amplitudes. This produces 11×(22+1)×250×14×3×3=725,000

65

circuits to be simulated with only modest coverage of frequency and amplitude. The

particular case of the OpAmp1 circuit of Fig. 4.1 takes 10 seconds to simulate and would

then give a simulation time of 7,250,000 seconds, or 84 days. This large amount of time

even for a

very simple circuit of eleven components suggests a need for speeding up the fault

simulator.

 There are several possible approaches to speeding up the fault simulation ranging

from changes in software architecture to sensitivity analysis. The possible changes in

software architecture include altering the flow of the simulation module to work in

multiple threads, a number of threads to be specified by the user based on the available

Figure 4.1 Operational amplifier circuit (OpAmp1).

66

computing resources. Changes in the software to simulate 4 circuits simultaneously

throughout the simulation cut the time by 75 percent, or linearly to one fourth. The

reduction in simulation time t, from N threads, is N/t times faster.

 The fault simulator was converted into a multi-threaded application by using the

fork function in C++ to run SPICE simulations spawned by the fault simulator in parallel.

This function will allow a program to diverge into multiple threads and allowing

processes that don’t depend on each other and don’t fully consume computing resources,

to run in parallel. The following is a code sample to show how a process can be forked.

The fork() function call returns a 0 for a child process, positive integer for the parent or

calling process and a negative integer in case of failure. This function allows for the

program to split but, still have access to the same variables and functions of the parent

program. The following code shows how simple controls can be used to spawn off child

processes and increase the speed of an application.

 /*some statements before fork()*/
int pid = fork();
if(pid < 0)
{
 perror("..."); exit(EXIT_FAILURE);
}
else if(pid) //parent process
{
 /*some code here*/
}
else // child process
{
 /*child code here*/
}

 In a second approach to speeding up simulations, more promising test vectors and

ORA metrics can be simulated, pruning less promising TPG vectors and metrics from the

search tree. Toward this end, a measure of how good a particular TPG waveform and

67

ORA metric is at isolating faults is proposed. This method will utilize Gaussian

characteristics of the output data to prune ineffective TPG waveforms and ORA methods

from the search tree.

4.2 Fault Coverage

 A second area for future consideration is estimates of fault coverage for the

BiQuad circuit. In earlier versions of the fault simulator, some fault coverage issues were

investigated for the circuit of Fig. 4.1. The operational amplifier of Fig. 4.1 OpAmp1

was simulated in the fault simulator. (The net-list used in testing the operational

amplifier can be found in Appendix C) The circuit was simulated using seven of the

eleven TPG the test patterns found in Appendix B. All six of the aforementioned ORA

metrics, Sout, Sdel, Smag, S16out, S16del, and S16mag were evaluated. The OpAmp1 circuit was

simulated with the following list of arguments as described in section 3.4:

 faultsim benchmark.cir 4 160 17 18 16 0 2.5 0.2 120 0 5

A simulation of test patterns 1, 2, 3, 4, 5, 6, and 7 from Appendix B were used in the

simulation at clock frequencies 10kHz, 100kHz, and 1MHz. All waveforms in the

operational amplifier tests used two hundred milli-volt input amplitude. The amplitude

was set to two hundred millivolts to be well in the range of the bias conditions such that

the amplifier output would not clip too severely. It was observed that test patterns 8, 9

10, 11, and 12 had convergence problems with the circuit during simulation. Even after

increasing simulation time limits, the convergence problems persisted and failed to yield

useful ORA data. For purposes of the remainder of this section, only the 10 kHz cup

TPG waveform and the Sdel ORA metric will be considered.

68

 Figure 4.2 is the analog histogram of Sdel for the count-up (Cup) analog ramp

function waveform at 10 kHz clock frequency and two hundred milli-volt amplitude. The

10 kHz clock frequency gives an effective frequency of 39 Hz, as derived by dividing the

clock frequency by the number of clock cycles it takes to complete one cycle, 256. The

histograms of Fig. 4.2 show the histogram created by the fault-free circuit as a solid line

and the composite for all faults as a dotted line.

-20

0

20

40

60

80

100

120

140

160

180

-1500 -1000 -500 0 500 1000 1500 2000

Sdel ORA Metric Value

N
um

be
r

of
 U

ni
ts

Fault Free Circuits Faulty Circuits

 Figure 4.3 shows a histogram containing only good circuits, the range at which a

fault-free circuit would fall when tested with the cup waveform at 10 kHz, two hundred

milli-volt amplitude, and Sdel ORA metric. Figure 4.4 shows the histogram produced

when an open is introduced into M1, creating a suck-off fault along with the histogram of

fault-free circuit (solid).

Figure 4.2 Histogram of fault-free circuits and faulty circuits for OpAmp1
with 200 mV Cup waveform at 10 kHz clock frequency.

69

-20

0

20

40

60

80

100

120

140

160

180

-1500 -1000 -500 0 500 1000 1500 2000

Sdel ORA Metric Value

N
um

be
r

of
 U

ni
ts

Fault Free Circuits

 The stuck-off fault condition for the transistor M1 of Fig. 4.1 is modeled as an

open as discussed in section 2.3.4, preventing the transistor from turning on and operating

normally.

 The M1 open creates the histogram in Fig 4.4 that is clearly shifted off to the

right, distinguishing the faulty circuit from the fault-free circuit. The figure illustrates

how the count-up waveform at 10 kHz can be used to find a faulty circuit with an open in

M1 using the Sdel ORA metric. This fault is said to be detectable and identifiable by this

waveform as illustrated in the separation between the two histograms of Figure 4.4. The

histogram of Fig. 4.5 outlines how the TPG waveform cup at 10 kHz and two hundred

millivolts does not distinguish an open in capacitor cl and an open in resistor rl. In this

figure, the solid histogram of the fault-free circuits overlap the composite histogram of

the faulty circuits (shown by the barely visible dotted curve). Therefore, the

Figure 4.3 Histogram of fault-free circuits for OpAmp1 with 200 mV Cup
waveform at 10 kHz clock frequency.

70

-20

0

20

40

60

80

100

120

140

160

180

-1500 -1000 -500 0 500 1000 1500 2000

Sdel ORA Metric Value

N
U

m
be

r
of

 U
ni

ts

Fault Free Circuits M1 -open circuits

TPG waveform Cup did not result in well separated histograms for faulty and fault-free

circuits with the Sdel ORA metric. These faults are considered to be undetectable and

therefore bring the fault coverage of the test vector down. It can be seen from the

schematic of the operational amplifier that these two components, rl and cl don’t effect

circuit operation at a low clock frequency of 10 kHz when they have open circuit faults.

4.3 Receiver Operating Characteristics

 To address the issue of fault coverage and selection of ORA metric decision

thresholds for deciding the presence of faults, we draw upon earlier work on receiver

operating characteristics (ROC). ROC is considered as a method to analyze the fault

coverage illustrated in the previous section. Consider the simplified probability density

function(pdf) of Fig. 4.1, in which two Gaussian pdf’s occur with different means and

variances where the Gaussian pdf is:

Figure 4.4 Histogram of fault-free circuits and circuits with M1 open for
OpAmp1 with 200 mV Cup waveform at 10 kHz clock frequency.

71

() 2

2

2

2
1

x

x

x

exp σ

πσ

−

= (4.1)

-20

0

20

40

60

80

100

120

140

160

180

-1500 -1000 -500 0 500 1000 1500 2000

Sdel ORA Metric Value

N
um

be
r

of
 U

ni
ts

Good Circuits rl open & cl open

 The pdf on the left of Fig. 4.6 represents a Gaussian distribution of some ORA

metric for fault-free circuits and the distribution on the right represents the distribution

for some particular fault. Let boundary A, be the decision threshold between fault-free

and faulty circuits. All of the units to the left of the boundary are classified fault-free and

all of the circuits to the right of boundary A are classified bad. ROC is used to set this

threshold and analyze what happens when the threshold is varied.

 The false alarm rate (equivalent to the sum of false positives and false negatives

discussed in chapter 1) can be modeled by the receiver operating characteristics, or the

receiver operating curve, as shown in Figure 4.7.

Figure 4.5 Histogram of Fault Free Circuits and Circuits with Rl open and Cl open
for OpAmp1 with 200 mVolt Cup waveform at 10 KHz Clock Frequency

72

 Figure 4.7 depicts how moving the boundary A to the left will decrease the

number of false positives but will increase the number of false negatives at a much

Fault-free circuit
distribution

Faulty circuit
distribution

A

Keep Throw away

Figure 4.6 Histogram illustrating false positives and false negatives.

Probability

X

false negatives false positives

fault-free circuits faulty circuits

Figure 4.7: Receiver operating curve.

73

greater rate given Gaussian data. The ROC curve shows the trade off between the

selectivity and sensitivity. The ROC curve can be used to select the best operating point

as a trade off between selectivity and sensitivity. The threshold would be chosen so that

the threshold, A, gives the best trade off between the total number of false positives and

false negatives. The threshold can be calculated by equation 4.2 where the average

expected cost of placing threshold A at point x, which takes the cost of a false positive, �,

the cost of missing a positive, �, with proportion of cases, �, and the location of the

boundary x[24].

())1(1cos xxt −+−= ρβαρ (4.2)

 Equation 4.2 can be used to determine the cost of choosing the threshold of

boundary A, of Fig. 4.6. The equation shows the complementary relationship of �, the

cost proportion, to the position of the boundary x. The relationship of Fig. 4.2 shows that

moving the boundary too close to the fault-free circuit pdf will cause an increase in costs

proportional to the cost proportion constant �. False positives and false negative do not

incur the same cost in the relationship of equation 4.2, allowing further flexibility.

4.4 Bhattacharyya Distance and Fast TPG Pattern Searching

 A simple way for quantifying the false alarm rate is the Bhattacharyya Error or B-

distance. This metric is not only useful in the one dimensional case such as Fig. 4.6, but

also multi-dimensional cases. Also, it can be used to help speed up fault simulation by

providing a metric for choosing more promising TPG waveforms in the branches of a tree

structured search for the best waveform in fault simulation.

 The solution to finding a TPG waveform efficiently presents many challenges.

One solution would be to first run a full batch of fault-free parametrically randomized

74

circuits for every waveform. From such a simulation the statistical parameters needed for

Gaussian statistical characterization of fault-free circuit ORA metrics can be derived.

The parameters needed include variance, correlation, standard deviation � (sigma), and �

(statistical mean) for all ORA metrics. This data would then provide a statistical model

for each of the six ORA metrics, Sout, Sdel, Smag, S16out, S16del, and S16mag.

 The next step is to take a small statistical sample of circuits with each fault, with

each test vector, and ORA metric for comparison with the fault-free circuit data that was

collected in the first step. The statistical sample of runs would then be analyzed to

determine which test vectors were most promising for exposing faults. There are

numerous potential approaches once the statistical data for the fault-free circuits and the

faulty circuits is estimated for all the TPG waveforms and ORA metrics. The next

question is how to use this statistical data to determine which test vectors will be

committed to complete simulation.

 Some possible techniques for using the statistical sample to choose promising

waveforms included using a six-sigma distance of each test vector to eliminate the test

vectors with mean that lie within the six-sigma distance of the fault-free circuits. The

problem with this strategy was that some of the TPG waveforms provided excellent fault

coverage with certain ORA metrics while other ORA metrics from the same TPG

waveform did not. Thus requiring retaining a test vector even if two out of three digital

ORA metrics performed poorly.

 In a more powerful approach, the efficacy of TPG waveforms and ORA metrics

can be ranked by calculating the Bhattacharyya distance between two multi-variate

Gaussian distributions and thus estimate error bound, or equivalently, the fault

75

coverage[1]. The requirements for the Bhattacharyya distance are two sets of

multivariate data that have a Gaussian pdf[1]. To the extent that the data is Gaussian, the

Bhattacharya distance and error bound techniques can be used to generate a TPG

waveform and ORA ranking.

 Bhattacharyya distance is a measure of the distance between two sets of

multivariate Gaussian pdf’s used to calculate the Chernoff error bound when quantifying

the hypothetical statistical differentiation between classes. The Bhattacharyya distance is

found from the mean and standard deviation of the two sets of multivariate Gaussian

data. The multivariate mean and multi-variant standard deviation from two sets of

Gaussian pdf's are used for the calculation of the B-distance and to estimate the error.

In the more simple case of one dimensional data, the scalar means and standard

deviations are first needed for each set of data [2]. The scalar mean is found from the

limit,

�
=

=
=

nk

k
kx

n 0

1µ (4.3)

 The scalar standard deviation and variance for the values can also be derived from

data. There are six sets of ORA metric values for each TPG pattern in the ORA files that

can used as the multivariate data for the Bhattacharyya distance algorithm outlined above

[2]. The next step in the process of ranking the TPG patterns by the best possible error of

any of three ORA values lies in calculating the Bhattacharyya distance to estimate the

error for each fault, for each ORA metric and TPG waveform. The Bhattacharyya

76

distance [3]:

()
()

�
�
	

��

�

�
�
�

��

� +
+−

�
�
�

�

�
�
�

� −
−=

��

����
−

2
1

2
2
1

1

21

21

1

21
2121

2
1

ln
2
1

2
)(

8
1

),(uuuuSSB T (4.4)

Where µ1 and µ2 are the vector means of 2 classes, ∑1 and ∑2 are covariance matrices [3].

For the purposes of illustration, a scalar form will be considered. The B-distance formula

then becomes in scalar form,

() ()

�
�
	

��

�

�
�
�

��

� +
+

+
−

=
21

2
2

2
1

2
2

2
1

2
21

21
2
1

ln
2
1

4
1

),(
σσ

σσ

σσ
µµ

SSB (4.5)

Where �1 is the mean for the fault-free circuits and �2 is the mean for the data, and �1 and

�2 are the standard deviations. The error bound is then found through the following

relationship [2].

()�=
1

),(exp
1

21
faultS

SSB
N

Error (4.6)

 In this scalar example, of equation 4.4 produces three error values per TPG

pattern, one for each ORA value from which the data was derived. This is then used to

determine the effective error rates of each individual feature of the Gaussian data, or the

fault coverage of different TPG waveforms and ORA metrics.

 The TPG waveforms are then sorted according to the lowest error bound.

The end result is a list ranking the most promising TPG waveforms and ORA metrics for

maximum fault coverage. Future research may consider using the vector form of the

Bhattacharyya measure instead of the scalar form of this discussion.

77

REFERENCES

[1] Pratt, Willaim, Digital Image Processing, 2nd ed. New York: John Wiley
 and Sons Press, 1991.

[2] Stroud, Charles, A Designers Guide to Built in Self Test, Boston: Kluwer

 Academic Publishers, 2000.

[3] T. P. Weldon, Y. A. Gryazin, and M. V. Klibanov, “Comparison of 2D

 and 1D Approaches to Forward Problem in Mine Detection”, Proceedings
 of the SPIE, vol. 4038, pp. 1140-1148, 2000.

[4] A. Khocke, S.D. Sherlekar, G. Venkatesh, R. Venkateswaran,

 “A Behavioral Fault Simulator for Ideal”, IEEE Design and Test of
 Computers, Vol. 4 No. 2, pp14-20, 1992.

[5] P. N. Variyam, A. Chatterjee, “ Digital-Compatible BIST for Analog
 Circuits Using Transient Response Sampling”, IEEE Design and Test of
 Computers, vol.6, no.3, 106-115, 2000.

[6] P. N. Variyan, A. Chatterjee. “Test Generation for Comprehensive Testing

 of Linear Analog Circuits Using Transient Response Sampling”
 Proceedings of 1997 International Conference on Computer-Aided
 Design, Washington, DC, pp 1146-1151, Nov, 1997.

[7] A. Chatterjee, B. C. Kim, N. Nagi, “Design for Testability and Built-In
 Self-Test of Mixed-Signal Circuits: A Tutorial” Proceedings of the
 10th International Conference on VLSI Design, , Hyperbad, India, pp 388-
 392, Jan, 1997.

[8] Y. V. Malyshenko, “Functional Fault Models for Analog Circuits” IEEE

 Design and Test of Computers, vol. 6, No.5 pp. 80-85 Apr 1998 pp 80 85

[9] K. Arabi, B. Kaminska, “ Parametric and Catastrophic Fault Coverage of

 Analog Circuits in Oscillation-Test Methodology” Proceedings of
 the 15th IEEE VLSI Test Symposium, Monterey, Ca. pp. 166-171, Apr.
 1997.

[10] Chatterjee, B. C. Kim, N. Nagi, “DC Built-In Self-Test for Linear Analog
 Circuits” IEEE Design and Test of Computers vol.5, no.3 pp 26-33,
 Summer 1996.

78

[11] Grochowski, D. Bhattacharya, T.R. Viswanathan & K. Laker
 “Integrated circuit testing”, IEEE Trans. on Circuits and Systems II
 Analog and Digital Signal Processing vol.44, no.8, pp. 610-633, 1997.

[12] Baker K., Richardson A.M., Dorey A.P., “Mixed Signal Test -

 Techniques, Applications and Demands”IEE Proc.-Circuits Devices
 Systems, vol.143, no.6 pp 86-102 , Dec. 1996.

[13] Agreement No. F30602-97-1-0042, Mixed Signal Based Built-In Self-Test
 for Analog Circuits, Final Report, Stroud, C., Bradley, E.

[14] Sunter J., “Mixed-Signal BIST - Does Industry Need it?”

 Proc. 3rd IEEE International Mixed Signal Workshop, Seattle Wa,
 Tutorial 2, June 1997.

[15] Wang, C.-J., Wey C.-L., “Efficient Testability Design Methodologies for

 Analog/Mixed-Signal Integrated Circuits” 3rd Int. Mixed Signal Testing
 Workshop, Seattle, pp. 68-74, June 1997.

[16] Novak, F., Mozetic I., Santo-Zarnik M., Biasizzo A., “Enhancing Design-

 for-Test for Active Analog Filters by Using CLR(R)” Analog
 Integrated Circuits and Signal Processing, vol.4 pp. 215-229, Sept. 1993.

[17] Vazquez D., Rueda A., Huertas J. L., Peralias E., “Unified off- and on-

 line testing in analogue circuits: concept and practical demonstrator”
 Proc. 3rd IEEE International Mixed Signal Workshop, Seattle, pp. 169-
 174, June 1997.

[18] Bratt, A.H., Richardson, A.M., Harvey, R.J. & Dorey, A.P.

 “A Design-For-Test Structure for Optimising Analog and Mixed Signal IC
 Test”, European Design and Test Conference, Paris, France, pp. 24-
 34, Mar. 1995.

[19] Mir, S., Lubaszewski, M., Courtois, B., “Unified Built-In Self-Test For

 Fully Differential Analog Circuits” Journal of Electronic Testing: Theory
 and Applications, vol.9, no.1-2, pp. 135-151, Sept. 1996.

[20] Wey, C.-L, “Built-In Self-Test (BIST) Structure for Analog Circuit Fault

 Diagnosis” IEEE Trans. on Instrumentation and Measurement, vol.39,
 no.3, pp.517-521, 1990.

[21] Arabi, K., Kaminska, B., “Oscillation Built-In Self Test (OBIST) Scheme
 for Functional and Structural Testing of Analog and Mixed-Signal
 Integrated Circuits”Proc. 1997 International Test Conference, Washigton
 DC, pp786-796, Nov.1997.

79

[22] Sedra, A., Smith, K., Microelectronic Circuits, 4th ed. New York, Oxford
 University Press, 1998.

[23] University of California at Berkley: BSIM3 Information Guide

 www.device.eecs.berkeley.edu/~bsim3/,

[24] Mentor Graphics Corporation Website: Produce Information Guide
 http://www.mentor.com/eldo/overview.html

[25] Oppenheim, A., Schafer, R., Discrete-Time Signal Processing, 2nd ed.,
 Upper Saddle River, 1998.

[26] Kaminska, B. et. al., “Analog and Mixed Signal Benchmark Circuits-
 First Release”, Proc. The 1997 International Test Conference, Washington
 DC, Nov. 1997.

[27] Kondagunturi, R., et. al., “Benchmark Circuits for Analog and Mixed
 Signal-Signal Testing”, Proc. 1999 IEEE Southeast Conference,
 Lexington, Ky, Mar. 1999.

[28] Maggard, K., et. al. “Built-In Self-Test for Analog Circuits in Mixed-
 Signal Systems”, Proc. 1999 IEEE Southeast Conference, Lexington, Ky,
 Mar. 1999.

81

APPENDIX A: CLASS LIBRARIES AND THEIR FUNCTIONS

Module Function

Ora

Processes SPICE output files and generates the ORA metric data

Gsrc

Processes G models in SPICE

Vsrc

Processes V components

Circuit

Loads, parses, and writes circuit files

DotEnds

Concludes processing with instance of .end statement

Other

Processes statements not included present Library i.e. diode, .probe,
.ac, .dc etc

Inductor

Processes inductors

Xsubckt

Processes sub-circuit statements in SPICE

CircuitStats

Processes parametric variations of R, L, C and mos.

DotSubckt

Processes .subckt statements in SPICE

Resistor

Processes resistor statements in SPICE

Isrc

Processes current source statements in SPICE

Comment

Processes commented lines in SPICE any line with *

Esrc

Processes SPICE voltage controlled voltage source statements

Statistics

Processes Statistical parameters for CircuitStat’s parametric
variations

Component

Loads circuit and processes all known components

Mos

Processes MOS components and their faults

Faultlist

Generates faultlist and for faulty files

Tpg

Generates test patterns for fault simulator

Faultsim

Main program executable

Anarun Processes ORA output and generates PDF histograms

82

Capacitor

Processes capacitors and their faults

Data

For processes various data arrays in file writing

83

APPENDIX B: LIST OF TPG WAVEFORMS

TPG Waveform Abbreviation

1. Count Up cup

2. Count down cdwn

3. Count Up Down cud

4. Count Up w/bit reversal cuR

5. Count down w/bit reversal cdR

6. Count Up Down w/bit reversal cudR

7. Linear Frequency Shift Register lsfr

8. Frequency Sweep fswp

9. Frequency Sweep w/bit reversal fswpR

10. Frequency Sweep w/ Constant Amplitude fswpC

11. Frequency Sweep w/ Constant Amplitude and Bit Reversal fswpRC

84

The following are pictorial diagrams illustrating the shape or appearance of TPG
waveforms.

Pattern Pictorial

cup

cdwn

cud

cuR noise-like

cdR noise-like

cudR noise-like

lsfr noise-like

fswp

fswpR random amplitude, random period

fswpC

fswpRC constant amplitude, random period

85

APPENDIX C: SPICE NET LIST FOR OPERATIONAL AMPLIFIER

*Operational amplifier Hspice Netlist
*tpw opamp: out vin+ vin- +5volt -5volt
.subckt OpAmp 9 11 12 13 14
R1 1 14 110E3
M1 1 1 13 13 PMOS L=4U W=150U
M2 3 1 13 13 PMOS L=4U W=35U
M3 9 1 13 13 PMOS L=4U W=100U
M4 4 12 3 3 PMOS L=4U W=60U
M5 5 11 3 3 PMOS L=4U W=60U

cl 5 16 1.27E-12

rl 16 9 8750
M6 4 4 14 14 NMOS L=4U W=27.5U
M7 5 4 14 14 NMOS L=4U W=27.5U
M8 9 5 14 14 NMOS L=4U W=100U

.MODEL NMOS NMOS (LEVEL = 3
+ TOX = 3.1E-8 NSUB = 1.763642E15 GAMMA = 0.721254
+ PHI = 0.7 VTO = 0.5944737 DELTA = 0.913057
+ UO = 652.3781644 ETA = 9.998788E-4 THETA = 0.0712612
+ KP = 7.319728E-5 VMAX = 2.51124E5 KAPPA = 0.5
+ RSH = 0.0981893 NFS = 4.760633E11 TPG = 1
+ XJ = 3E-7 LD = 0 WD = 7.519702E-
7
+ CGDO = 1.67E-10 CGSO = 1.67E-10 CGBO = 1E-10
+ CJ = 2.879473E-4 PB = 0.8976295 MJ = 0.5
+ CJSW = 1.18445E-10 MJSW = 0.05)

.MODEL PMOS PMOS (LEVEL = 3
+ TOX = 3.1E-8 NSUB = 1E17 GAMMA = 0.4794113
+ PHI = 0.7 VTO = -0.8594243 DELTA = 0.4719726
+ UO = 100 ETA = 0.9984189 THETA = 0.1358457
+ KP = 2.489648E-5 VMAX = 1.052858E5 KAPPA = 0
+ RSH = 35.4503246 NFS = 5.538975E11 TPG = -1
+ XJ = 2E-7 LD = 9.78062E-15 WD = 1E-6
+ CGDO = 1.98E-10 CGSO = 1.98E-10 CGBO = 1E-10
+ CJ = 2.872176E-4 PB = 0.7469896 MJ = 0.4224801
+ CJSW = 1.402728E-10 MJSW = 0.0702615)

.ends OpAmp

Xop1 16 17 18 2 10 OpAmp
VDD 2 0 5
VSS 10 0 0

.end

86

APPENDIX D: SPICE NET LIST FOR REDUCED ORDER BIQUAD FILTER

* Schematics Version 9.2.2
* Fri Sep 13 14:55:32 2002

* From [PSPICE NETLIST] section of h:\apps\pspice\PSpice\PSpice.ini:
* HPO:Node 2, BPO:Node 9, LPO: Node 13
* Input nodes: 5 & 2

R3 2 1 10000
R2 3 2 10000
R7 8 9 7.5000
R4 9 10 10000
R6 12 8 3010
R1a 3 4 20000
R1b 12 3 20000
R5 3 13 10000
R3a 7 2 100
R3b 16 9 100
R3c 15 13 100

E2 0 7 8 , 3 1000000
E6 0 15 12 , 10 1000000
E5 0 16 12 , 1 1000000

D2 2 6 Dbreak
D3 0 2 Dbreak
D8 0 9 Dbreak
D9 9 11 Dbreak
D10 0 13 Dbreak
D11 13 14 Dbreak

C1 1 9 0.015U
C2 10 13 0.015U
C5 5 4 1
C11 0 12 10U
C7 0 12 0.1U

V15 6 0 5V
V18 11 0 5V
V19 14 0 5V

.MODEL Dbreak D(IS=1E-15)

*Vin 5 0 DC 0V
V13 12 0 2.5V

*.PROBE
.END

87

APPENDIX E: FAULTSIM MANUAL

 The following pages are manual pages from the fault simulator software, faultsim,

class libraries, and anarun. This appendix contains detailed information for each class

library, the main executable faultsim, and the post processing executable anarun. The

detailed information includes program flow, usage information, class functions, and

variable descriptions along with various data members.

88

. ---

.

. faultsim.cpp

.

. Rev 2.0

.

. ---

. faultsim.cpp is a c++ main() executable program

.

. it uses classes from ../classes directory

. for help, run faultsim without arguments and it will

. print a help screen

.

.

. NOTE: for latest usage information, run faultsim at the

. command line without any arguments!!

.

.

. Usage:

.

. faultsim ckt.cir numproc numrand inpos inneg outpos outneg vbias vamp maxcpu
vomin vomax repnum
.
. - ckt.cir is the circuit spice file
. - numproc is number of processes that are forked()
. to run in parallel on a multi-cpu machine
. - numrand is number of randomizations per fault
. - inpos,inneg are pos and neg differential input nodes
. - outpos,outneg are pos and neg differential output nodes
. - vbias is test pattern dc bias, where
. inpos=vbias-(vampl/2) to inpos=vbias+(vampl/2)
. and inneg=vbias
. if vbias=0, then a true floating input is used
. - vamp test pattern amplitude in volts
. - maxcpu is max number cpu seconds allowed per spice run
. - vomin to vomax is differential output voltage range
. - repnum num or repetitions to run waveform
.
. Example:
. faultsim benchmark.cir 2 5 17 18 16 0 2.5 0.2 30 0 5

. Functional summary of faultsim
.
. 1. controls parallel execution on a multi-cpu machine
.
. 2. first creates a directory "rundataxx" for the run

89

.

. 3. then, creates directory "rundataxx/circ" and stores

. randomized template spice circuit files there,

. with one ".cir" file per randomized faulty circuit

.

. the original spice file is entered as an argument

. in the faultsim command line

.

. the template file has a comment line "tpwtpgheretpw"

. used as a marker for the location of the test pattern

. to be inserted

.

. numrand command line argument determines number of

. randomizations per fault (i.e, 100 random circuits with

. R1 open-circuited, 100 with R2, ... etc.)

.

. 4. then, faultsim spawns (using fork()) several executables

. "runtpg" that make use of multiple cpu's

.

. FLAGS ---

.

. Check the header file for any useful debug flags

. initial simulation set-up:

.

. - create data directory rundatxxxx where xxx is date

. - create subdirectory,

. creates directory "rundataxx/circ" and stores

. randomized template spice circuit files there,

. with one ".cir" file per randomized faulty circuit

.

. the original spice file is entered as an argument

. in the faultsim command line

.

. the template file has a comment line "tpwtpgheretpw"

. used as a marker for the location of the test pattern

. to be inserted.

. - set up statistics for simulation

. process stats refer to lot-to-lot batch-batch process variations

. and hence tend to be large standard deviations

. chip stats refer to variations within a single chip

.

. default statistics:

.

90

 Process stats Chip Stats
. --------------------- ---------------------
. pdf mean std-dev pdf mean std-dev
. ----- ---- ------ ----- ---- -----
. Resistors: gauss 1 0.1 gauss 1 0.04
. Capacitors: gauss 1 0.11 gauss 1 0.03
. Inductors: gauss 1 0.12 gauss 1 0.02
.
.
.
. - create directory for rundata
. name it rundataxxx, where xxx is a date stamp
.
. - generate faults and randomized files
. store in directory rundataxxx/spicefiles
.
. default faults:
. Faults
. ---------------------
. open short parametric
. ----- ---- ------
. Resistors: 1e9 ohm 1 0.1
. Capacitors: 2e-18 F 2 0.2
. Inductors: 3e9 H 3E-18 0.3
. MOSFET: 1e8 Ohm 3 0.12 (drain-source open/shorts)
.
.
.
. - create Tpg files
. test all waveforms at 10KHz, 100KHz, 1 MHz
.
. possible waveforms
. cup, cdwn, cud, cuR, cdR, para, paraR, pulse,
. cudR, const, lfsr, fswp, fswpR, fswpC, fswpRC\n");
.
.
. includes lines for tapping into circuit for input nodes
. and output nodes (disabled if any argument is NULL)
. also, vbias="" disables DC bias creating pure floating
. differential input
.
. - - inpos,inneg are pos and neg differential input nodes
. for differential input voltage source
. - outpos,outneg are pos and neg differential output nodes
. - vbias test pattern dc bias,
. where inpos=vbias-(vin/2) through vbias+(vin/2)

91

. and inneg = vbias

.

. (output file name is contained in filename class member)

. Usage:

.

. possible waveforms

. cup, cdwn, cud, cuR, cdR, para, paraR, pulse,

. cudR, const, lfsr, fswp, fswpR, fswpC, fswpRC);

.

.

. - generate one scratch directory "procx" per parallel processes

. - generate one ora directory for all ora results

. - run all good circuits first

. with parallel processes using fork

.

. Method:

. while loop on tpg files (test patterns)

. while loop on good spicefiles (circuits without test atterns)

. erase all process directories (procx)

. for loop over number of processes (parallel threads)

. copy/merge tpg/spice file to procx directories

. fork parallel processes

. run eldo on all procx directories

. create ora files (output response analaysis)

. end loop number processes

. copy ora to master ora files in directory ora

. end loop good spicefiles

. end loop tpgfiles

.

. - run all faulty circuits next

. with parallel processes using fork

92

. ---

.

. Capacitor.cpp

.

. Rev 1.0

.

. ---

. Capacitor.cc is a c++ clas for capacitor devices as would be found in

. a spice netlist file.

. The basic structure is defined in Capacitor.h

.

. class Capacitor

. {

.

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="C"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

.

. Check the header file for any useful debug flags

.

. CONSTRUCTORS --

. Function: Capacitor::Capacitor()

. default constructor

. Assigns following defaults:

. rawline="Cdefault"

. linenumber=0

. type="C"

. name="Cdefault"

. value=0;

93

. model="Cdefault"

. numnodes=2

. nodelist=0 0

. remainderline="Cdefault"

. rawline="Cdefault"

. trackerr=0

. randomerr=0

. Function: Capacitor::Capacitor(char * xrawline, int xlinenumber)
. constructor from raw spicefile line

. Function: Capacitor::Capacitor(char * xname, double xvalue, int xnodeplus,
. int xnodeneg, int xlinenumber)
. constructor from data
. Function: Capacitor::~Capacitor()
. default destructor
. Function: Capacitor& Capacitor::operator=(const Capacitor & r)
. overloaded equal
. FUNCTIONS ---
. Function: Capacitor::loadline(char * xrawline,int xlinenumber)
. loads capacitor with data translated from a spice-formatted line
. Assigns following defaults:
. rawline="Cdefault"
. linenumber=0
. type="C"
. name="Cdefault"
. value=0;
. model="Cdefault"
. numnodes=2
. nodelist=0 0
. remainderline="Cdefault"
. rawline="Cdefault"
. trackerr=0
. randomerr=0
. Function: void Capacitor::writefile(ofstream * xfname)
. writes a capacitor to the file handle xfname
.
. file is assumed to already be opened
. file is not closed
. Function: void Capacitor::writefile(ofstream * xfname , CircuitStats & cs)
. writes a randomized capacitor to the file handle xfname
. file is assumed to already be opened
. file is not closed
. Function: void Capacitor::print()
. prints capacitor stderr
. Usage: a.print();

94

. Function: void Capacitor::setvalue(double xvalue)

. sets capacitor value

. Function: void Capacitor::scalevalue(double xscale)

. sets capacitor value to value times xscale

. Function: char * Capacitor::getname()

. gets capacitor name

. END

95

. ---

.

. Circuit.cpp

.

. Rev 1.0

.

. ---

. Circuit.cc is a c++ clas for a Circuit as would correspond to the

. top-level circuit in a spice netlist file.

. The basic structure is defined in Circuit.h

.

. class Circuit

. {

.

. private:

.

. char * spicefilename; //name of Original spicefile

.

. char * spicefilename; //Original spicefilename loaded in memory

.

. Component * pC; //pointer to objects corresponding to

. // various components of circuit

. int numcomponents; //number of components

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

.

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Circuit::Circuit()

. default constructor

. Assigns following defaults:

. char * spicefilename="Circuit Not Loaded";

. int numcomponents=0;

. Component * pC=NULL;

. Function: Circuit::~Circuit()

. default destructor

. FUNCTIONS ---

. Function: Circuit::loadfile(char * xfilename)

. loads Circuit with data translated from a spice-file

. Function: void Circuit::writefile(char * xfname)

. writes a component to the file named xfname

. file is opened and closed

. Function: void Circuit::writefile(char * xfname, CircuitStats & cs)

. writes a randomized circuit to the file named xfname

. file is opened and closed

96

. Function: void Circuit::print()

. prints Circuit stderr

. Usage: a.print();

. Function: int Circuit::getnumcomponents()

. returns numcomponents

. Function: char * Circuit::getspicefilename()

. returns spicefilename

. Function: Component Circuit::getcomponent(int n)

. returns component n

97

. ---

.

. CircuitStats.cpp

.

. Rev 1.0

.

. ---

. CircuitStats.cc is a c++ class for statistical functions

.

. The basic structure is defined in CircuitStats.h

. class CircuitStats

. {

. private:

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

.

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: CircuitStats::CircuitStats()

. default constructor

. Assigns following defaults:

. comment="Default uniform"

. pdf1="uniform"

. pdf2="disabled"

. mean1=0;

. sigma1=1;

. mean2=0;

. sigma2=0;

. Function: CircuitStats::~CircuitStats()

. default destructor

. Function: CircuitStats & CircuitStats::operator=(const CircuitStats & stat)

. overloaded equal

. Function: void CircuitStats::SetCircuitStats(char * xcomment,

. char * xrprocesspdf, double rprocessmean, double rprocesssig,

. char * xrchippdf, double rchipmean, double rchipsig,

. char * xcprocesspdf, double cprocessmean, double cprocesssig,

. char * xcchippdf, double cchipmean, double cchipsig,

. char * xlprocesspdf, double lprocessmean, double lprocesssig,

. char * xlchippdf, double lchipmean, double lchipsig)

. load statistics

. FUNCTIONS ---

. Function: void CircuitStats::genchip()

. returns a random number

. Function: double CircuitStats::scaleresistor()

. returns a random number

98

. Function: double CircuitStats::scalecapacitor()

. returns a random number

. Function: double CircuitStats::scaleinductor()

. returns a random number

. Function: void CircuitStats::writefile(ofstream * xfname)

. writes a CircuitStats object to the file handle xfname

. it is written as a spicefile comment

. Function: void CircuitStats::print()

. prints resistor stderr

. Usage: a.print();

99

. ---

.

. Comment.cpp

.

. Rev 1.0

.

. ---

. Comment.cc is a c++ clas for Comment lines as would be found in

. a spice netlist file.

. The basic structure is defined in Comment.h

. class Comment

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber; //linenumber in original spicefile

. char * type; //device type, i="Comment"

. char * name; //="Comment"

. double value; //=0

. char * model; //="Comment"

. int numnodes; //=0

. int nodelist[2]; //= 0 0

. //

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value

. double trackerr; //=0

. double randomerr; //=0

. //

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

.

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Comment::Comment()

. default constructor

. Assigns following defaults:

. Function: Comment::Comment(char * xtext,int xlinenumber)

. constructor from data

. Function: Comment::~Comment()
. default destructor
. Function: Comment& operator=(const Comment& com)
. overloaded equal
. FUNCTIONS ---

100

. Function: Comment::loadline(char * xrawline,int xlinenumber)

. loads Comment with data translated from a spice-formatted line

. Function: void Comment::writefile(ofstream * xfname)

. writes a Comment to the file handle xfname
 file is assumed to already be opened
. file is not closed
. Function: void Comment::print()
. prints Comment stderr
. Usage: a.print();

101

. ---

.

. Component.cpp

.

. Rev 1.0

.

. ---

. Component.cc is a c++ clas for Component devices as would be found in

. a spice netlist file.

. The basic structure is defined in Component.h

.

. class Component

. {

. private:

. char * type; //device type, i.e., R, L, C, V, Comment, unknown

. int linenumber; //linenumber in original spicefile

. Resistor * pR; // pointer to object actually containing component

. Inductor * pL; // only one pointer should be non-NULL

. Capacitor * pC;

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Component::Component()

. default constructor

. Assigns following defaults:

. char * type="Component Undefined";

. int linenumber=0;

. Resistor * pR=NULL;

. Inductor * pL=NULL;

. Capacitor * pC=NULL;

. Function: Component::Component(Component &)

. copy constructor

. Function: Component::~Component()

. default destructor

. Function: Component& Component::operator=(Component & comp)

. overloaded equal

. FUNCTIONS ---

. Function: Component::loadline(char * xrawline,int xlinenumber)

. loads Component with data translated from a spice-formatted line

. Function: void Component::writefile(ofstream * Xsubcktfname)

. writes a component to the file handle Xsubcktfname

. file is assumed to already be opened
. file is not closed

102

. Function: void Component::writefile(ofstream * Xsubcktfname, CircuitStats & cs)

. writes a randomized component to the file handle Xsubcktfname

.

. file is assumed to already be opened

. file is not closed

. Function: void Component::print()

. prints Component stderr

. Usage: a.print();

. Function: int Component::isresistor()

. return 1 if true, 0 if not

. Function: int Component::iscapacitor()

. return 1 if true, 0 if not

. Function: int Component::isinductor()

. return 1 if true, 0 if not

. Function: int Component::ismosfet()

. return 1 if true, 0 if not

. Function: char Component::gettype()

. return type

. Function: char * Component::getname()

. return name

. Function: void Component::setvalue(double xvalue)

. set component value to xvalue

. Function: void Component::faultdrainopen(double xvalue)

. set drain to have series resistor of value xvalue

. typically used to open-circuit a fet

. Function: void Component::faultdrainsourceshort(double xvalue)

. set drain to have drain-source shunt resistor of value xvalue

. typically used to short-circuit a fet

. Function: void Component::scalevalue(double xscale)

. set component value to value times xscale

103

. ---

.

. Data.cpp

.

. Rev 1.0

.

. ---

. Data.cc is a c++ clas for Data arrays

. The basic structure is defined in Data.h

.

. class Data

. {

.

. private:

. //numarray x arraysize data array
 char* comment; //
. char** names; //names of each data array
. int numarray; //number of arrays
.
. double* rarray; //array real part
. double* iarray; //array imaginary part
. int arraysize; //length of each array associated with
. //each name
. A wide class of operators is provided, and generally memory is
. allocated and deallocated automatically.
. FLAGS ---
.
. Check the header file for any useful debug flags
. CONSTRUCTORS --
. Function: Data::Data()
. default constructor
. Assigns following defaults:
. Function: Data::Data(const Data& dat)
. copy constructor
. Function: Data::Data(char * xcomment, int xnumarray, int arraysize)
. constructor of particular size
. Function: Data::~Data()
. default destructor
. Function: Data& operator=(const Data& com)
. overloaded equal
. FUNCTIONS ---
. Function: store(int xarraynum,
. int xelnum,
. double xr, double xi); //store xr and xi into xrdata xidata
. //of array number xarraynum
. //at array element number xelnum

104

. Function: double readr(int xarraynum, int xelnum);

. read exeulnum'th element rarray value from

. from the xarraynum'th array

. Function: double readi(int xarraynum, int xelnum);

. read exeulnum'th element iarray value from
. from the xarraynum'th array
. Function: double readname(int xarraynum);
. read name of
. the xarraynum'th array
. Function: double storename(int xarraynum,char* xname);
. store name of
. the xarraynum'th array
. Function: Data getarray(int xnum)
. get
. the xnum'th array
. Function: void Data::rplothistoeps(char * fname,
. int xarraynum,
. double xmin, double xmax,
. int numbins);
. plot histogram of rarray xarraynum
. for range xmin to xmax
. with numbins bins
. Function: void Data::ploteps(int xarraynum,
. char * xfname, char * title,
. char * xaxlabel, char * yaxlabel)
. array number xnum contains the data
. rarray contains xaxis coordinate
. iarray contains y coordnate
. writes an eps plotfile to the file xfname
. title is placed at top of plot
. xaxlabel and yaxlabel are axis labels of plot
. Function: void Data::writefile(char * xfname)
. writes a Data to the file xfname
. Function: void Data::print()
. prints Data stderr
. Usage: a.print();
. Function: double Data::rmean(int xarraynum)
. compute mean of rarray number xarraynum
. Function: double Data::imean(int xarraynum)
. compute mean of iarray number xarraynum
. Function: double Data::rmeansq(int xarraynum)
. compute mean square (second moment)
. of rarray number xarraynum
. Function: double Data::imeansq(int xarraynum)
. compute mean square (second moment)

105

. of iarray number xarraynum

. Function: double Data::rmin(int xarraynum)

. compute minimum of rarray number xarraynum

. Function: double Data::rmax(int xarraynum)

. compute maximum of rarray number xarraynum

. Function: double Data::imin(int xarraynum)

. compute maximum of iarray number xarraynum

. Function: double Data::imax(int xarraynum)

. compute maximum of iarray number xarraynum

. NON-MEMBER FUNCTIONS

. Function float plot_limit_max(float)
. used to calculate maximum plotranges in plot_eps()
. Function float plot_limit_min(float)
. used to calculate minimum plotranges in plot_eps()

106

. ---

.

. DotEnds.cpp

.

. Rev 1.0

.

. ---

. DotEnds.cc is a c++ class for .ends lines as would be found in

. a spice netlist file.

. The basic structure is defined in DotEnds.h

. class DotEnds

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="R"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: DotEnds::DotEnds()

. default constructor

. Assigns following defaults:

. rawline="Rdefault"

. linenumber=0

. type="R"

. name="Rdefault"

. value=0;

. model="Rdefault"

. numnodes=2

. nodelist=0 0

. remainderline="Rdefault"

107

. rawline="Rdefault"

. trackerr=0

. randomerr=0

. Function: DotEnds::~DotEnds()

. default destructor

. Function: DotEnds& DotEnds::operator=(const DotEnds & xde)

. overloaded equal

. FUNCTIONS ---

. Function: DotEnds::loadline(char * xrawline,int xlinenumber)

. loads resistor with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="Rdefault"

. linenumber=0

. type="R"

. name="Rdefault"

. value=0;

. model="Rdefault"

. numnodes=2

. nodelist=0 0

. remainderline="Rdefault"

. rawline="Rdefault"

. trackerr=0

. randomerr=0

. Function: void DotEnds::writefile(ofstream * xfname)

. writes a resistor to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void DotEnds::print()

. prints resistor stderr

. Usage: a.print();

108

. ---

.

. DotSubckt.cpp

.

. Rev 1.0

.

. ---

. DotSubckt.cc is a c++ class for .ends lines as would be found in

. a spice netlist file.

. The basic structure is defined in DotSubckt.h

. class DotSubckt

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="R"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

.

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: DotSubckt::DotSubckt()

. default constructor

. Assigns following defaults:

. rawline="Rdefault"

. linenumber=0

. type="R"

. name="Rdefault"

. value=0;

. model="Rdefault"

. numnodes=2

. nodelist=0 0

109

. remainderline="Rdefault"

. rawline="Rdefault"

. trackerr=0

. randomerr=0

. Function: Resistor::~Resistor()

. default destructor

. Function: DotSubckt& DotSubckt::operator=(const DotSubckt& sub)

. overloaded equal

. FUNCTIONS ---

. Function: Resistor::loadline(char * xrawline,int xlinenumber)

. loads resistor with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="Rdefault"

. linenumber=0
/. type="R"
. name="Rdefault"
. numnodes=2
. nodelist=0 0
. remainderline="Rdefault"
. rawline="Rdefault"
. trackerr=0
. randomerr=0
. Function: void Resistor::writefile(ofstream * xfname)
. writes a resistor to the file handle xfname
. file is assumed to already be opened
. file is not closed
. Function: void Resistor::print()
. prints resistor stderr
. Usage: a.print();

110

. ---

.

. Esrc.cpp

.

. Rev 1.0

.

. ---

. Esrc.cc is a c++ class for controlled-source devices as would be found in

. a spice netlist file.

. The basic structure is defined in Esrc.h

. class Esrc

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="Esrc"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is
. allocated and deallocated automatically.
. FLAGS ---
. Check the header file for any useful debug flags
. CONSTRUCTORS --
. Function: Esrc::Esrc()
. default constructor
. Assigns following defaults:
. rawline="EsrcDefault"
. linenumber=0
. type="V"
. name="EsrcDefault"
. value=0;
. model="EsrcDefault"
. numnodes=2
. nodelist=0 0

111

. remainderline="EsrcDefault"

. rawline="EsrcDefault"

. trackerr=0

. randomerr=0

. Function: Esrc::Esrc(char * xrawline, int xlinenumber)

. constructor from raw spicefile line

. Function: Esrc::Esrc(char * xname, double xvalue, int xnodeplus,

. int xnodeneg, int xlinenumber)

. constructor from data

. Function: Esrc::~Esrc()

. default destructor

. Function: Esrc& Esrc::operator=(const Esrc & xe)

. overloaded equal

. FUNCTIONS ---

. Function: Esrc::loadline(char * xrawline,int xlinenumber)

. loads vsource with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="EsrcDefault"

. linenumber=0

. type="V"

. name="EsrcDefault"

. value=0;

. model="EsrcDefault"

. numnodes=2

. nodelist=0 0

. remainderline="EsrcDefault"

. rawline="EsrcDefault"

. trackerr=0

. randomerr=0

. Function: void Esrc::writefile(ofstream * xfname)

. writes a vsource to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void Esrc::print()

. prints vsource stderr

. Usage: a.print();

112

. ---

.

. Faultlist.cpp

.

. Rev 1.0

.

. ---

. Faultlist.cc is a c++ class for a Faultlist as would correspond to the

. top-level Faultlist in a spice netlist file.

. The basic structure is defined in Faultlist.h

.

. class Faultlist

. {

. private:

.

. char * spicefilename; //name of Original spicefile

.

. char * spicefilename; //Original spicefilename loaded in memory

.

. Component * pC; //pointer to objects corresponding to

. // various components of Faultlist

. int numcomponents; //number of components

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Faultlist::Faultlist()

. default constructor

. Assigns following defaults:

. char * spicefilename="Faultlist Not Loaded";

. int numcomponents=0;

. Component * pC=NULL;

. Function: Faultlist::~Faultlist()

. default destructor

. FUNCTIONS ---

. Function: Faultlist::genfaultlist(Circuit & xcirc,

. double xropen,double xrshort,double xrpara,

. double xcopen,double xcshort,double xcpara,

. double xlopen,double xlshort,double xlpara)
 generate faultlist (no parametric faults)
. generates only opens and shorts
. see genparafaultlist to generate a parametric faultlist
.
. xcirc is circuit without faults
.

113

. xropen=resistance of open circuit resistors

. xrshort=resistance of shorts

. xrpara=parametric fault , i.e 0.5 = =/- 50%

. Function: Faultlist::genparafaultlist(Circuit & xcirc,

. double xropen,double xrshort,double xrpara,

. double xcopen,double xcshort,double xcpara,

. double xlopen,double xlshort,double xlpara)

. generate faultlist (no short/open faults)

. generates only parametric faults

. see genfaultlist to generate short/opens faultlist

. xcirc is circuit without faults

. xropen=resistance of open circuit resistors

. xrshort=resistance of shorts

. xrpara=parametric fault , i.e 0.5 = =/- 50%

. Function: void Faultlist::writefile(char * xfname)

. writes a component to the file named xfname

. file is opened and closed

. Function: void Faultlist::writefaults(char* dirname, char * xfname, Circuit & ckt)

. writes faulty circuits to the files named xfnamefault

. in directory dirname

. file is opened and closed

. Function: void Faultlist::writerandfaults(char * dirname, char * xfname,

. Circuit & ckt,CircuitStats & cs, int xnr)

. writes randomized faulty circuits to the files named xfnamefault

. with xnr randomizations per fault

. in directory dirname

. file is opened and closed

. Function: void Faultlist::print()

. prints Faultlist stderr

. Usage: a.print();

. char * Faultlist::getfname(int n)

. return faultname of fault n

. Component Faultlist::getfcomp(int n)

. return faulty component for fault n

. int Faultlist::getnumcomp(int n)

. return faulty component number corresponding to fault n

114

. ---

.

. Gsrc.cpp

.

. Rev 1.0

.

. ---

. Gsrc.cc is a c++ class for controlled-source devices as would be found in

. a spice netlist file.

. The basic structure is defined in Gsrc.h

. class Gsrc

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="Gsrc"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

.

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Gsrc::Gsrc()

. default constructor

. Assigns following defaults:

. rawline="GsrcDefault"

. linenumber=0

. type="V"

. name="GsrcDefault"

. value=0;

. model="GsrcDefault"

. numnodes=2

. nodelist=0 0

115

. remainderline="GsrcDefault"

. rawline="GsrcDefault"

. trackerr=0

. randomerr=0

. Function: Gsrc::Gsrc(char * xrawline, int xlinenumber)

. constructor from raw spicefile line

. Function: Gsrc::Gsrc(char * xname, double xvalue, int xnodeplus,

. int xnodeneg, int xlinenumber)

. constructor from data

. Function: Gsrc::~Gsrc()

. default destructor

. Function: Gsrc& Gsrc::operator=(const Gsrc & xe)

. overloaded equal

. FUNCTIONS ---

. Function: Gsrc::loadline(char * xrawline,int xlinenumber)

. loads vsource with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="GsrcDefault"

. linenumber=0

. type="V"

. name="GsrcDefault"

. value=0;

. model="GsrcDefault"

. numnodes=2

. nodelist=0 0

. remainderline="GsrcDefault"

. rawline="GsrcDefault"

. trackerr=0

. randomerr=0

. Function: void Gsrc::writefile(ofstream * xfname)

. writes a vsource to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void Gsrc::print()

. prints vsource stderr

. Usage: a.print();

116

. ---

.

. Inductor.cpp

.

. Rev 1.0

.

. ---

. Inductor.cc is a c++ clas for inductor devices as would be found in

. a spice netlist file.

. The basic structure is defined in Inductor.h

. class Inductor

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="L"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Inductor::Inductor()

. default constructor

. Assigns following defaults:

. rawline="Ldefault"

. linenumber=0

. type="L"

. name="Ldefault"

. value=0;

. model="Ldefault"

. numnodes=2

. nodelist=0 0

. remainderline="Ldefault"

117

. rawline="Ldefault"

. trackerr=0

. randomerr=0

. Function: Inductor::Inductor(char * xrawline, int xlinenumber)

. constructor from raw spicefile line

. Function: Inductor::Inductor(char * xname, double xvalue, int xnodeplus,

. int xnodeneg, int xlinenumber)

. constructor from data

. Function: Inductor::~Inductor()

. default destructor

. Function: Inductor& Inductor::operator=(const Inductor & r)

. overloaded equal

. FUNCTIONS ---

. Function: Inductor::loadline(char * xrawline,int xlinenumber)

. loads inductor with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="Ldefault"

. linenumber=0

. type="L"

. name="Ldefault"

. value=0;

. model="Ldefault"

. numnodes=2

. nodelist=0 0

. remainderline="Ldefault"

. rawline="Ldefault"

. trackerr=0

. randomerr=0

. Function: void Inductor::writefile(ofstream * xfname)

. writes a inductor to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void Inductor::writefile(ofstream * xfname , CircuitStats & cs)

. writes a randomized inductor to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void Inductor::print()

. prints inductor stderr

. Usage: a.print();

. Function: void Inductor::setvalue(double xvalue)

. sets inductor value

. Function: void Inductor::scalevalue(double xscale)

. sets inductor value to value times xscale

. Function: char * Inductor::getname()

. gets inductor name

118

. ---

.

. Isrc.cpp

.

. Rev 1.0

.

. ---

. Isrc.cc is a c++ clas for source devices as would be found in

. a spice netlist file.

. The basic structure is defined in Isrc.h

.

. class Isrc

. {

.

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="I"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

.

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Isrc::Isrc()

. default constructor

. Assigns following defaults:

. rawline="IsrcDefault"

. linenumber=0

. type="I"

. name="IsrcDefault"

. value=0;

. model="IsrcDefault"

119

. numnodes=2

. nodelist=0 0

. remainderline="IsrcDefault"

. rawline="IsrcDefault"

. trackerr=0

. randomerr=0

. Function: Isrc::Isrc(char * xrawline, int xlinenumber)

. constructor from raw spicefile line

. Function: Isrc::Isrc(char * xname, double xvalue, int xnodeplus,

. int xnodeneg, int xlinenumber)

. constructor from data

. Function: Isrc::~Isrc()

. default destructor

. Function: Isrc& Isrc::operator=(const Isrc & vdd)

. overloaded equal

. FUNCTIONS ---

. Function: Isrc::loadline(char * xrawline,int xlinenumber)

. loads vdd with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="IsrcDefault"

. linenumber=0
/. type="I"
. name="IsrcDefault"
. value=0;
. model="IsrcDefault"
. numnodes=2
. nodelist=0 0
. remainderline="IsrcDefault"
. rawline="IsrcDefault"
. trackerr=0
. randomerr=0
. Function: void Isrc::writefile(ofstream * xfname)
. writes a vdd to the file handle xfname
. file is assumed to already be opened
. file is not closed
. Function: void Isrc::print()
. prints vdd stderr
. Usage: a.print();

120

. ---

.

. Mos.cpp

.

. Rev 1.0

.

. ---

. Mos.cc is a c++ clas for mos devices as would be found in

. a spice netlist file.

. The basic structure is defined in Mos.h

. class Mos

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="M"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. char * fault; //fault used to print extra resistor

. int faultflag; //=0 if no fault

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

.

. Check the header file for any useful debug flags

.

.

.

. CONSTRUCTORS --

.

.

. Function: Mos::Mos()

. default constructor

. Assigns following defaults:

. rawline="Mdefault"

121

. linenumber=0

. type="M"

. name="Mdefault"

. value=0;

. model="Mdefault"

. numnodes=2

. nodelist=0 0

. remainderline="Mdefault"

. rawline="Mdefault"

. trackerr=0

. randomerr=0

. rfault="Mdefault"

. int faultflag=0 = no fault

.

.

. Function: Mos::Mos(char * xrawline, int xlinenumber)

. constructor from raw spicefile line

. Function: Mos::Mos(char * xname, double xvalue, int xnodeplus,

. int xnodeneg, int xlinenumber)

. constructor from data

. Function: Mos::~Mos()

. default destructor

. Function: Mos& Mos::operator=(const Mos & mos)

. overloaded equal

. FUNCTIONS ---

. Function: Mos::loadline(char * xrawline,int xlinenumber)

. loads mos with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="Mdefault"

. linenumber=0
/. type="M"
. name="Mdefault"
. value=0;
. model="Mdefault"
. numnodes=2
. nodelist=0 0
. remainderline="Mdefault"
. rawline="Mdefault"
. trackerr=0
. randomerr=0
. Function: void Mos::writefile(ofstream * xfname)
. writes a mos to the file handle xfname
. file is assumed to already be opened
. file is not closed
. Function: void Mos::print()
. prints mos stderr

122

. Usage: a.print();

. Function: void Mos::faultdrainopen(double xvalue)

. set drain to have series resistor of value xvalue

. typically used to open-circuit a fet

. Function: void Mos:: faultdrainsourceshort(double xvalue)

. set drain -source to have shunt resistor of value xvalue

. typically used to short-circuit a fet

. Function: char * Mos::getname()

. gets Mos name

123

. ---

.

. Ora.cpp

.

. Rev 1.0

.

. ---

. Ora.cc is a c++ class for generating input signals

. The basic structure is defined in Ora.h

. class Ora

. {

. private:

. char * spicefile; //name of spicefile

. char * tpgfile; //name of tpg file

. char * chifile; //name of chifile (spice output file)

. double vomax; //range of differential vout

. double vomin; // assumed equal to range

. // of a/d converter at output

. double vbias; //dc bias at input

. //if bias=0, assume floating inputs

. //else inneg=constant vbias

. // with inpos=vbias+/- ampl/2

. double ampl; //amplitude of differential input

. //ranges 0-ampl if no bias

. double vinscale; //scale factor applied to differential

. double voutscale; // in/out voltages

. //typically, voscale=1 and viscale is

. // adjusted so vin has same volt swing

. // as vout

. double voutsum; //ora sum of Vout

. double vdiffsum; //ora sum of Vout - Vin

. double vmagsum; //ora sum of |Vout - Vin|

. double clkthresh; //clock threshold (half-voltage)

. // assumed 2.5 volts(see Tpg.cpp)

. int errflag; //error flag

. char * errmsg; //error message

.

. int nclk; //column number of clock data in chi file

. int nvinplus,nvinminus; //column numbers of vin data in chi file

. int nvoutplus,nvoutminus; //column number of vout data in chi file

. waveforms:

. cup, cdwn, cud, cuR, cdR, para, paraR, pulse,

. cudR, const, lfsr, fswp, fswpR, fswpC, fswpRC\n");

. clock freq in Hz, KHz (K), MHz (M), GHz (G)

. amplitude in Volts (integer)

. output format: sp (SPICE) ex (EXCEL) cs (CSIM)\n");

124

. repnum is number of repetitions of waveform or SR bits for freq_sweep

. poly is an integer 0-127 giving inner coefficients of poly

. CONSTRUCTORS --

. Function: Ora::Ora()

. default constructor

. Assigns following defaults:

. Function: Ora::~Ora()

. default destructor

. Function: int Ora::genora(char * spicefile,

. char * tpgfile, char * chifile

. double xvbias, double xampl,

. double xvomin, double xvomax)

. - generate ora from spice (.cir), tpg (.tpg),

. and spice output (.chi) files

. - the chi file is a spice output file

. - xvbias and xampl are dc input bias and

. amplitude of input voltage

. if bias=0, assume floating inputs,

. else neg innode=constant vbias

. with pos=vbias+/- ampl/2

. amplitude of differential input

. ranges 0-ampl if no bias

. Return: 1=bad ora, 0=good

. Usage: a.createora();

. Function: unsigned int Ora::analog2digital(double xanaval)

. converts analog value to digital value: digital value = analog/0.019608

. Usage: ;

. This function could be use in the future

. Function: unsigned int Ora::decimal2binary_V2(unsigned int xdecval)

. converts decimal to binary

. Usage: ;

. Function: void Ora::writeorafile(char * xorafile)

. writes ora data/results to ora file

. Usage: ;

. Function: void Ora::writeoraerrfile(char * xoraerrfile)

. writes ora error message to ora error file

. Usage: ;

. Function: void Ora::print()

. prints Ora stderr

. Usage: a.print();

.

. Function: int Ora::findcolumns()

. - find column locations in spice output data file

. - to locate

. clock, vopos, voneg, vineg, vipos

. - set corresponding class members

125

. if bias=0, assume floating inputs,

. Return: 1=fail, 0=succeed

. Usage: a.createora();

126

. ---

.

. Other.cpp

.

. Rev 1.0

.

. ---

. Other.cc is a c++ clas for Other lines as would be found in

. a spice netlist file.

. The basic structure is defined in Other.h

. class Other

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber; //linenumber in original spicefile

. char * type; //device type, i="Other"

. char * name; //="Other"

. double value; //=0

. char * model; //="Other"

. int numnodes; //=0

. int nodelist[2]; //= 0 0

. //

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value

. double trackerr; //=0

. double randomerr; //=0

. //

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

.

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Other::Other()

. default constructor

. Assigns following defaults:

. Function: Other::Other(char * xtext,int xlinenumber)

.

. constructor from data

. Function: Other::~Other()

. default destructor

. Function: Other& operator=(const Other& com)

. overloaded equal

. FUNCTIONS ---

127

. Function: Other::loadline(char * xrawline,int xlinenumber)

. loads Other with data translated from a spice-formatted line

. Function: void Other::writefile(ofstream * xfname)

. writes a Other to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void Other::print()

. prints Other stderr

. Usage: a.print();

128

. ---

.

. Resistor.cpp

.

. Rev 1.0

.

. ---

. Resistor.cc is a c++ clas for resistor devices as would be found in

. a spice netlist file.

. The basic structure is defined in Resistor.h

. class Resistor

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="R"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Resistor::Resistor()

. default constructor

. Assigns following defaults:

. rawline="Rdefault"

. linenumber=0

. type="R"

. name="Rdefault"

. value=0;

. model="Rdefault"

. numnodes=2

. nodelist=0 0

. remainderline="Rdefault"

129

. rawline="Rdefault"

. trackerr=0

. randomerr=0

. Function: Resistor::Resistor(char * xrawline, int xlinenumber)

. constructor from raw spicefile line

. Function: Resistor::Resistor(char * xname, double xvalue, int xnodeplus,

. int xnodeneg, int xlinenumber)

. constructor from data

. Function: Resistor::~Resistor()

. default destructor

. Function: Resistor& Resistor::operator=(const Resistor & r)

. overloaded equal

. FUNCTIONS ---

. Function: Resistor::loadline(char * xrawline,int xlinenumber)

. loads resistor with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="Rdefault"

. linenumber=0

. type="R"

. name="Rdefault"

. value=0;

. model="Rdefault"

. numnodes=2

. nodelist=0 0

. remainderline="Rdefault"

. rawline="Rdefault"

. trackerr=0

. randomerr=0

.

. Function: void Resistor::writefile(ofstream * xfname)

. writes a resistor to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void Resistor::writefile(ofstream * xfname , CircuitStats & cs)

. writes a randomized resistor to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void Resistor::print()

. prints resistor stderr

. Usage: a.print();

. Function: void Resistor::setvalue(double xvalue)

. sets resistor value

. Function: void Resistor::scalevalue(double xscale)

. sets resistor value to value times xscale

. Function: char * Resistor::getname()

. gets resistor name

130

. ---

.

. Statistics.cpp

.

. Rev 1.0

.

. ---

. Statistics.cc is a c++ class for statistical functions

.

. The basic structure is defined in Statistics.h

. class Statistics

. {

. private:

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Statistics::Statistics()

. default constructor

. Assigns following defaults:

. comment="Default uniform"

. pdf1="uniform"

. pdf2="disabled"

. mean1=0;

. sigma1=1;

. mean2=0;

. sigma2=0;

. Function: Statistics::Statistics(char * xcomment, char * xpdf1,

. double xmean1, double xsigma1)

. constructor from data

. Function: Statistics::~Statistics()

. default destructor

. Function: Statistics & Statistics::operator=(const Statistics & stat)

. overloaded equal

. FUNCTIONS ---

. Function: double Statistics::genrand()

. returns a random number

. Function: Statistics::setstats(char * xcomment, char * xpdf1,

. double xmean1, double xsigma1)

. set statistics

. Function: Statistics::setmean(double xmean1)

. set mean=xmean1,

. Function: Statistics::setstatstol(char * xcomment, char * xpdf1,

. double xmean1, double tolerance)

. set statistics

131

. set mean=xmean1,

. sigma=stddev=tolerance/2.5 for gauss pdf

. i.e., +/- 2.5 std deviations=tolerance

. i.e., a 5% tolerance, tolerance=0.05, stdev=0.02

. for uniform pdf, sigma=tolerance*2/3.4641

. Function: void Statistics::writefile(ofstream * xfname)

. writes a statistics object to the file handle xfname

. it is written as a spicefile comment

. Function: void Statistics::print()

. prints resistor stderr

. Usage: a.print();

132

. ---

.

. Tpg.cpp

.

. Rev 1.0

.

. ---

. Tpg.cc is a c++ class for generating input signals

. The basic structure is defined in Tpg.h

. class Tpg

. {

.

. private:

.

.

. char * clkfreq; //clock frequency

. char * amplitude; //waveform amplitude

. char * waveform; //waveform (square/ramp/parabola, etc)

. char * format; //file format of output, sp =spice

. char * filename; //name of output file

. char * poly; //lfsr polynomial

. char * repnum; //number of repetitions of waveform

. //the following two are automatically created from above members

. int argc; //these items argc and argv mimmick

. char ** argv; //the behavior of cestroud's anatpg.c

.

. int printdig(int xval, int xdig);//used internally only

. waveforms:

. cup, cdwn, cud, cuR, cdR, para, paraR, pulse,

. cudR, const, lfsr, fswp, fswpR, fswpC, fswpRC\n");

. clock freq in Hz, KHz (K), MHz (M), GHz (G)

. amplitude in Volts (integer)

. output format: sp (SPICE) ex (EXCEL) cs (CSIM)\n");

. repnum is number of repetitions of waveform or SR bits for freq_sweep

. poly is an integer 0-127 giving inner coefficients of poly

. CONSTRUCTORS --

. Function: Tpg::Tpg()

. default constructor

. Assigns following defaults:

. Function: void Tpg::createtpg(char * filename ,char * waveform , char * clkfreq ,

. char * amplitude , char * format ,

. char * repnum , char * poly)

. gcreates input signals

. Usage: a.createtpg();

. Function: Tpg::~Tpg()

. default destructor

133

. Function: void Tpg::mergefiles(char * xtpgfile,

. char * xcirfile, char * xmergedfile)

. merges tpg file and circuit file into output file

. .end statement is placed at end of final output file

. Usage:

. Function: void Tpg::Tpg::writefile()

. writes tpg to file

. (output file name is contained in filename class member)

. Usage:

. Function: void Tpg::writefulltpg(

. char * xinposnode, char * xinnegnode,

. char * xoutposnode, char * xoutnegnode,

. char * xvbias)

. writes tpg to file contained in "filename" member

. includes lines for tapping into circuit for input nodes

. and output nodes (disabled if any argument is NULL)

. also, vbias="" disables DC bias of input and you

. get a true floating differential input

. - xinposnode, xinnegnode: pos and neg input nodes

. for differential input voltage source

. - xoutposnode, xoutnegnode: pos and neg output nodes

. - vxbias: dc bias value where posnode input ranges from

. xvbias+(vin/2) to xvbias-(vin/2) and

. innegnode is set to vbias

. (output file name is contained in filename class member)

. Usage:

. Function: int TPG::printdig(int val, int dig)

. writes the line components for csim file format

. Usage: a.writetpg();

. Function: void Tpg::getterminput()

. prompts user for terminal input

. Usage:

. Function: void Tpg::print()

. prints Tpg stderr

. Usage: a.print();

134

. ---

.

. Vsrc.cpp

.

. Rev 1.0

.

. ---

. Vsrc.cc is a c++ clas for source devices as would be found in

. a spice netlist file.

. The basic structure is defined in Vsrc.h

. class Vsrc

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="V"; //device type, i.e., R, L, C, V, M

. char * name; //instance name, i.e., R1, R2, etc

. double value; //resistance value

. char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for R, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // R=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

. FLAGS ---

. Check the header file for any useful debug flags

. CONSTRUCTORS --

. Function: Vsrc::Vsrc()

. default constructor

. Assigns following defaults:

. rawline="VsrcDefault"

. linenumber=0

. type="V"

. name="VsrcDefault"

. value=0;

. model="VsrcDefault"

. numnodes=2

. nodelist=0 0

. remainderline="VsrcDefault"

135

. rawline="VsrcDefault"

. trackerr=0

. randomerr=0

. Function: Vsrc::Vsrc(char * xrawline, int xlinenumber)

. constructor from raw spicefile line

. Function: Vsrc::Vsrc(char * xname, double xvalue, int xnodeplus,

. int xnodeneg, int xlinenumber)

. constructor from data

. Function: Vsrc::~Vsrc()

. default destructor

. Function: Vsrc& Vsrc::operator=(const Vsrc & vdd)

. overloaded equal

. FUNCTIONS ---

. Function: Vsrc::loadline(char * xrawline,int xlinenumber)

. loads vdd with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="VsrcDefault"

. linenumber=0
/. type="V"
. name="VsrcDefault"
. value=0;
. model="VsrcDefault"
. numnodes=2
. nodelist=0 0
. remainderline="VsrcDefault"
. rawline="VsrcDefault"
. trackerr=0
. randomerr=0
. Function: void Vsrc::writefile(ofstream * xfname)
. writes a vdd to the file handle xfname
.
. file is assumed to already be opened
. file is not closed
. Function: void Vsrc::print()
. prints vdd stderr
. Usage: a.print();

136

. ---

.

. Xsubckt.cpp

.

. Xsubcktev 1.0

.

. ---

. Xsubckt.cc is a c++ clas for Xsubckt devices as would be found in

. a spice netlist file.

. The basic structure is defined in Xsubckt.h

. class Xsubckt

. {

. private:

. char * rawline; //raw spicefile line as read in from file

. int linenumber=0; //linenumber in original spicefile

. char * type="Xsubckt"; //device type, i.e., Xsubckt, L, C, V, M

. char * name; //instance name, i.e., Xsubckt1, Xsubckt2, etc

. //double value; //resistance value

. //char * model=" "; //optional device model name

. int numnodes=2; //number of nodes/pins the device has

. int nodelist[2]; //ordered list of node numbers for device

. // for Xsubckt, nodelist is +node, -node

. char * remainderline; //remainder of raw spice-file line contents

. // as contained in rawline,

. // after stripping off name, model,

. // nodelist and value (first line only)

. double trackerr=0; //tracking portion of error factor

. double randomerr=0; //random portion of error

. // Xsubckt=(1+trackerr+randomerr)*value

. A wide class of operators is provided, and generally memory is

. allocated and deallocated automatically.

.

.

. FLAGS ---

.

. Check the header file for any useful debug flags

. CONSTXsubcktUCTOXsubcktS --

. Function: Xsubckt::Xsubckt()

. default constructor

. Assigns following defaults:

. rawline="Xsubcktdefault"

. linenumber=0

. type="Xsubckt"

. name="Xsubcktdefault"

. //value=0;

. //model="Xsubcktdefault"

137

. numnodes=2

. nodelist=0 0

. remainderline="Xsubcktdefault"

. rawline="Xsubcktdefault"

. trackerr=0

. randomerr=0

. Function: Xsubckt::Xsubckt(char * xrawline, int xlinenumber)

. constructor from raw spicefile line

. Function: Xsubckt::Xsubckt(char * xname, int xnodeplus,

. int xnodeneg, int xlinenumber)

. constructor from data

. Function: Xsubckt::~Xsubckt()

. default destructor

. Function: Xsubckt& Xsubckt::operator=(const Xsubckt & r)

. overloaded equal

. FUNCTIONS ---

. Function: Xsubckt::loadline(char * xrawline,int xlinenumber)

. loads Xsubckt with data translated from a spice-formatted line

. Assigns following defaults:

. rawline="Xsubcktdefault"

. linenumber=0

. type="Xsubckt"

. name="Xsubcktdefault"

. value=0;

. model="Xsubcktdefault"

. numnodes=2

. nodelist=0 0

. remainderline="Xsubcktdefault"

. rawline="Xsubcktdefault"

. trackerr=0

. randomerr=0

. Function: void Xsubckt::writefile(ofstream * xfname)

. writes a Xsubckt to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void Xsubckt::writefile(ofstream * xfname , CircuitStats & cs)

. writes a randomized Xsubckt to the file handle xfname

. file is assumed to already be opened

. file is not closed

. Function: void Xsubckt::print()

. prints Xsubckt stderr

. Usage: a.print();

135

APPENDIX F: S16OUT ORA METRIC FAULT METRIC DATA

 The histograms of Figs. F.1 to F.12 are histograms showing individual faults and

fault free circuits, for the ORA metric S16out, for simulations of the circuit of Fig. 3.3. The

histograms of F.1 to F.12 comprise the composite histogram of Fig. 3.14. The histograms

of Figs. F.13 to F.24 are histograms showing individual faults and fault free circuits, for

the ORA metric S16mag, for simulations of the circuit of Fig. 3.3. The histograms of F.13

to F.24 comprise the composite histogram of Fig. 3.16.

136

-20

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000

S16out ORA Metric Value

N
um

be
r o

f U
ni

ts

Fault Free Circuits R2short

-1

0

1

2

3

4

5

6

7

8

9

10

0 10000 20000 30000 40000 50000 60000

S16out ORA Metric Value

nu
m

be
r

of
 u

ni
ts

Fault Free Circuits R3open

Figure F.1: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset,
and 0-5V output range. The histograms shown are R2short(dotted) and fault-free(solid)

circuits.

Figure F.2: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset,
and 0-5V output range. The histograms shown are R3open(dotted) and fault-free(solid)

circuits.

137

-20

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000

S16out ORA Metric Value

nu
m

be
r

of
 u

ni
ts

Fault Free Ciruits R3short

-1

0

1

2

3

4

5

6

7

8

9

10

0 10000 20000 30000 40000 50000 60000

S16out ORA Metric value

nu
m

be
r

of
 u

ni
ts

R4open Fault Free ciruits

Figure F.3: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset,
and 0-5V output range. The histograms shown are R3short(dotted) and fault-free(solid)

circuits.

Figure F.4Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset,
and 0-5V output range. The histograms shown are R4open(dotted) and fault-free(solid)

circuits.

138

-20

0

20

40

60

80

100

120

140

160

0 10000 20000 30000 40000 50000 60000

S16out ORA metric value

n
um

be
r

of
 u

n
its

Fault Free Ciruits R4short

-2

0

2

4

6

8

10

12

0 10000 20000 30000 40000 50000 60000

S16out ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R5open

Figure F.5: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset,
and 0-5V output range. The histograms shown are R4short(dotted) and fault-free(solid)

circuits.

Figure F.6: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset,
and 0-5V output range. The histograms shown are R5open(dotted) and fault-free(solid)

circuits.

139

-20

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000

S16out ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R5short

-2

0

2

4

6

8

10

12

0 10000 20000 30000 40000 50000 60000

S16out ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R6open

Figure F.7: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset,
and 0-5V output range. The histograms shown are R5short(dotted) and fault-free(solid)

circuits.

Figure F.8: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset,
and 0-5V output range. The histograms shown are R6open(dotted) and fault-free(solid)

circuits.

140

-2

0

2

4

6

8

10

12

0 10000 20000 30000 40000 50000 60000

S61out ORA metric value

n
um

be
r

of
 u

n
its

fault free ciruits R6short

-1

0

1

2

3

4

5

6

7

8

9

10

0 10000 20000 30000 40000 50000 60000

S16out ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R7open

Figure F.9: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset,
and 0-5V output range. The histograms shown are R6short(dotted) and fault-free(solid)

circuits.

Figure F.10: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R7open(dotted) and fault-

free(solid) circuits.

141

-1

0

1

2

3

4

5

6

7

8

9

10

0 10000 20000 30000 40000 50000 60000

S16out ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free ciruits R7short

-20

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000

S16out ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits C1open

Figure F.11: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R7short(dotted) and fault-

free(solid) circuits.

Figure F.12: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are C1open(dotted) and fault-

free(solid) circuits.

142

-20

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000

S16out ORA metric value

nu
m

b
er

 o
f u

ni
ts

fault free circuits C2open

-20

0

20

40

60

80

100

120

140

160

180

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R2short

Figure F.13: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are C2open(dotted) and fault-

free(solid) circuits.

Figure F.14: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R2short(dotted) and fault-

free(solid) circuits.

143

-2

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R3open

-20

0

20

40

60

80

100

120

140

160

180

0 5000 10000 15000 20000 25000

S16mag ORA metric

nu
m

be
r

of
 u

ni
ts

fault free circuits R3short

Figure F.15: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R3open(dotted) and fault-

free(solid) circuits.

Figure F.16: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R3short(dotted) and fault-

free(solid) circuits.

144

-2

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free ciruits R4open

-5

0

5

10

15

20

25

30

35

40

45

0 5000 10000 15000 20000 25000

S16ma ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free ciruits R4short

Figure F.17: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R4open(dotted) and fault-

free(solid) circuits.

Figure F.18: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R4short(dotted) and fault-

free(solid) circuits.

145

-2

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R5open

-20

0

20

40

60

80

100

120

140

160

180

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R5short

Figure F.19: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R5open(dotted) and fault-

free(solid) circuits.

Figure F.20: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R5short(dotted) and fault-

free(solid) circuits.

146

-2

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

b
er

 o
f

un
its

fault free circuits R6open

-2

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R6short

Figure F.21: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R6open(dotted) and fault-

free(solid) circuits.

Figure F.22: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R6short(dotted) and fault-

free(solid) circuits.

147

-2

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

b
er

 o
f

un
its

fault free circuits R7open

-2

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits R7open

Figure F.23: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R7open(dotted) and fault-

free(solid) circuits.

Figure F.24: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are R7open(dotted) and fault-

free(solid) circuits.

148

-2

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000

S16mag ORA metric

nu
m

be
r

of
 u

ni
ts

fault free circuits C1open

-20

0

20

40

60

80

100

120

140

160

180

0 5000 10000 15000 20000 25000

S16mag ORA metric value

nu
m

be
r

of
 u

ni
ts

fault free circuits C2open

Figure F.24: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are C1open(dotted) and fault-

free(solid) circuits.

Figure F.24: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V
offset, and 0-5V output range. The histograms shown are C2open(dotted) and fault-

free(solid) circuits.

