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ABSTRACT 
 

 
AARON EARNEST CASE. Mixed Signal Fault Simulator: Comparisons of 
Hardware and Simulation Results. (under the direction of DR. THOMAS PAUL 
WELDON) 
 
 
 This thesis describes a mixed signal fault simulator and compares simulated 

results to theoretical and hardware experimental results.  The fault simulator takes a 

SPICE net list file as input and produces, as output, the circuit’s behavior under certain 

fault conditions in order to establish the fault coverage of combinations of test waveforms 

and output metrics.  The present form of the fault simulator includes catastrophic faults, 

typically open or short circuits.   To demonstrate the efficacy of the fault simulator, 

simulated results were compared against hardware experimental results to verify the 

accuracy of the simulator for the specific case of a BiQuad filter.  In this thesis, the focus 

is on the development of the analog portion of the mixed signal fault simulator, since the 

treatment of the digital portions of the circuit is well known and well defined. 
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CHAPTER 1: INTRODUCTION 
 

  
 This thesis presents a mixed signal fault simulator for built-in self-test (BIST) and 

gives experimental hardware and simulation results that verify the performance of the 

simulator.  The focus of this effort is on the analog portion of the mixed signal fault 

simulator since the methodology for digital portions of a mixed signal system are well 

known.  The thesis begins with an introduction of the relevance of fault simulation and 

how it fits into the overall product cycle.  Next, the architecture and methods used to 

develop the fault simulator are discussed.  Then, simulator results are compared with 

hardware results to validate the fault simulator models and techniques.  Finally, directions 

for future work are offered.  In the following, the background of the fault simulator is 

given.  Details on the simulator and experimental results are given in subsequent 

chapters.   

 To place the need for a fault simulator in a larger context, consider a typical 

manufacturing process that has at some point a verification stage, whereby it is 

determined that a product meets specifications.  This stage of production should seek to 

pass products that are good and eliminate the products that are bad, and only the products 

that are bad.  In the process of product verification there are inevitably four categories of 

products found [21].  In the first category, bad units that are found to be good in 

production are known as false positives.  This category can be costly to a firm through 

replacement costs, loss of reputation, and ensuing loss of market share.  The false-
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positive portion would ideally be zero for any enterprise as it is a liability in the mart of 

competitive commerce.  In the second category, units that are found to be bad, and are 

bad, are minimally damaging to an enterprise in the sense that there is a loss of materials.  

In the third category, good units that are found to be bad in production are known as false 

negatives [21].  False negatives do not greatly damage a firm’s reputation, but cause loss 

of resources and time. In the final category, good units that are found to be good in 

production are the yield of an enterprise.  So, it can be seen that any product verification 

process should limit any erroneous prognosis as well as bad products.  In this 

manufacturing context, the fault simulator is a tool for designing built in self test (BIST) 

to minimize losses due to false positives and false negatives. 

 In addition, the complexity of mixed signal and analog integrated circuits lead to 

complicated verification requirements [18].  In particular, it is difficult to predict how 

analog portions of a mixed signal system will behave under variable circumstances such 

as component variations, faults, and different test metrics.  Such predictions of system 

behavior, either for use with external testing equipment or for use with built-in self-test 

architectures, can be generated by a fault simulator early in the design and test cycle.  

Through such fault simulation, fault coverage can be determined for a set of test patterns 

and output metrics to ensure that a circuit is free of manufacturing defects.   

 In the following, we first review the current state of the art.  Then we give an 

overview of current challenges in fault simulation.  Finally, the problem addressed in this 

thesis is stated.     
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1.1 Current State of the Art 

 In digital portions of a mixed signal circuit, fault modeling is well established.  

Digital fault modeling can be classified into two categories, gate level fault modeling and 

transistor level fault modeling [21, 8, 2].  In digital circuits there are two types of faults, 

stuck-at-one(sa1) and stuck-at-zero(sa0)[2].  Both levels of digital fault modeling utilize 

these types of faults.  In gate level fault modeling, the stuck at faults are exercised at the 

gate inputs and outputs.  In transistor level fault modeling required for CMOS 

technology, stuck at faults are modeled at the transistor level rather than just the gate 

level, giving a more complex yet comprehensive picture of fault conditions. 

 There has been much done in the area of digital fault simulation and modeling, 

but much less work in the realm of analog fault simulation [8].  The lack of a mature 

analog fault simulator can be partly attributed to the lack of mature fault models for 

analog circuits [7].  Furthermore, modeling and isolating faults in analog circuits is one if 

the most difficult tasks in diagnostic engineering [8]. 

 The work on analog fault models can be classified into two categories, 

catastrophic faults and parametric faults [26].  Catastrophic faults, also referred to as hard 

faults, are the analog equivalents of stuck at faults in the digital domain.  Analog hard 

faults occur when the terminal nodes of the component are stuck short or stuck open.   

Parametric faults are defined as any variation of the component values outside the 

acceptable performance range or tolerance limits [27]. 

 The current models used for catastrophic faults of analog circuits include the use 

of high and low resistances to model shorts and opens at the component terminals as later 

shown in Figs. 2.5 and 2.6[27, 28].  The resistive and capacitive components have a 1 � 
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resistance in parallel (Rp = 1 �) for shorts and a 100 M� resistance in series (Rs = 100 

M�) for opens.   Similarly, the MOSFET is faulted in much the same manner across the 

source and drain only.  In contrast, the BJT has a stuck-open and stuck-short fault 

between each of its three terminals, collector, emitter, and base [27].  

 Many different methods have been proposed for analog fault simulation.  One 

notable method uses DC transfer function testing to test and isolate faults [10].  While 

DC testing is promising in cost and compact in layout size, the method has lower fault 

coverage at the macro level and is not viable at the transistor level [10].  DC testing does 

provide for simpler fault modeling but, does not give adequate parametric fault coverage 

for many types of analog circuits [10].   

 A second method, behavioral fault simulation works well for simplifying and 

expediting analog fault simulation [4].  In behavioral fault modeling methods, the basic 

algorithm is the same as that for event-driven logic simulation, except that the fault 

simulation algorithm propagates fault lists along with logic values through gate level 

hardware descriptions [4].  Behavioral modeling is generally accepted as being faster but 

less accurate than other methods and does not lend itself well to analog fault modeling 

without acceptable levels of complication.  However, behavioral modeling only works at 

the gate level and therefore will not lend itself to analog micro-modeling [4].    

 A third method, functional fault models also work well at simplifying digital fault 

modeling but are often too complex and don’t offer high fault coverage at the transistor 

level for analog faults [8].  Functional fault models work on blocks of analog circuits and 

can therefore only diagnose a faulty block of components not individual component 
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failures.  Furthermore, functional fault models only offer a limited number of output 

conditions for each fault given a predefined test vector.   

 Another analog fault modeling technique is the test-oscillation methodology.  The 

oscillation methodology treats every analog sub-circuit as an oscillator for verification 

[9].  The technique tests the frequency response of the fundamental analog blocks against 

known frequencies for fault-free case to detect faults [9].  While the method is promising 

with respect to cost and area overhead, in most cases, the method is not generally 

applicable to all types of circuits without considerable modifications [9, 2, 5].   

For any methodology, fault simulation is used to identify the best set of test 

vectors and output metric to be capable of finding of identifying the maximum number of 

faults in a circuit.  Fault simulation allows investigation of the efficacy of different test 

vectors and output metrics.  By using the fault simulator, the best test vector and output 

metrics can be identified for a particular system.   

Although not recommended, fault simulation could be bypassed in the design of a 

system.  In this case, the verification stages of chip manufacturing consist of blindly 

applying a signal and measuring a “good output” for a fault-free unit.  Without fault 

simulation data, selecting test vectors for any testing architecture would be not be 

possible due to a lack of prior knowledge of circuit behavior under faulty conditions.  The 

fault simulator on the other hand allows investigation of input/output behavior of any 

possible fault conditions for a variety of test vectors and output metrics.   

 At present, the state of the art for analog and mixed signal fault modeling has yet 

to witness the same success as digital fault modeling and test pattern generation [8].  The 

more primitive state of analog and mixed signal fault simulations and techniques can be 
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attributed to the complexity of fault modeling in an analog circuit versus digital circuits.  

Research in IC testing has produced various methods and products to approach the 

problem of analog fault modeling in mixed signal circuits but has yet to arrive at any 

widely accepted standard or method.  The aforementioned technologies offer potential for 

analog fault modeling to close the gap on much more advanced digital fault modeling [2].  

Thus, this thesis focuses on initial steps toward mixed-signal fault simulation. 

 Analog fault simulation and fault modeling present different, and more complex, 

challenges than digital fault modeling, due to the nature of analog circuits [26, 27].  The 

performance of analog portions of a mixed signal circuit are subject to parametric 

variations, in addition to catastrophic faults such as an open or a short.  Any simulation or 

testing procedure for an analog circuit must include parametric variation of components, 

as well as catastrophic faults, in verification and test vector generation.  Therefore, analog 

portions of a mixed signal IC present much more complex problems in testing and 

simulation, and thus are more costly in verification.  In the next section, we give further 

overview of issues in fault simulation.   

1.2 Overview of Current Challenges and Solutions to Fault Simulation 

  Although there has been much work in the area of digital fault simulation and 

fault modeling, analog fault simulation lags far behind that of digital fault simulation due 

to the complexity of analog fault simulation and analog IC verification [8].  Analog and 

mixed signal IC’s require more time and money investment in fault modeling and 

simulation to achieve the same level of fault coverage as their digital counterparts [8].  

The nature of an analog circuit makes testing, and testing decisions, considerably more 

complex.  With a digital circuit, a test vector will indicate that a certain gate or transistor 
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is stuck at 0 or 1, but an analog test vector needs to indicate if a analog circuit is within a 

predetermined error bound [16].   Thus, one complicating problem in analog testing is 

where to draw the line, or threshold, for fault-free or faulty analog circuits as well as how 

to quantify the yield of fault-free circuits.  In this, fault coverage can be defined as the 

number of detected faults divided by the total number of possible faults (i.e., in a fault 

list) [2].   

 An analog or mixed signal fault simulation can consider normal parametric 

variations in conjunction with catastrophic faults in fault simulation.  To accurately 

estimate the probability distribution of how a fault-free circuit behaves, a large number of 

samples taken from parametrically randomized circuits is required.  The range of values 

for any given output metric that are obtained for the randomized good circuit will indicate 

natural variations due to the fabrication and manufacturing process of the system.  This 

parametric randomization also must be done for each injected fault to determine 

accurately the probability distribution of output metric values for each fault.  The 

foregoing randomization for fault-free and faulty circuits, combined with need to evaluate 

the circuit with a multitude of waveforms, lead to very large simulation times even for the 

simplest of circuits.  Simulation times on the order of weeks can be encountered with as 

few as 15 components, 30 faults, 200 randomizations, and 30 waveforms.  In this 

example, there are (30+1)×200×30= 186,000 combinations.  Therefore, an important 

issue in fault simulation considered by this thesis is reducing simulation times and 

developing techniques to accelerate computation, and these issues are partly addressed in 

the future work section. 
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1.3 Statement of Problem 

 This thesis describes the design and testing of the analog portion of a mixed signal 

fault simulator.  The simulator takes as input a SPICE file of a circuit under test (CUT) 

and produces, as output, statistical information on the behavior of the circuit under all 

fault conditions with a variety of candidate test pattern waveforms and output metrics.  

The raw output metric data of the simulator is post-processed into histograms that 

provide statistical fingerprints of a variety of output metrics for each potential 

catastrophic fault in the circuit.  The output data and histograms can then be used to 

identify the best input stimuli, or test pattern waveforms, and the best output metrics for 

testing a hardware version of the circuit.    

 The present fault simulator is tailored to a specific built-in self-test (BIST) 

architecture for mixed signal systems.  In the BIST architecture under consideration, test 

pattern waveforms are applied and output metrics are measured [2][13].  Although the 

current fault simulator is tailored for a specific architecture for BIST, the modular design 

of the fault simulator permits adaptability to future architectures in future work.     

 In Chapter 2, we first describe the design of the fault simulator.  Then, simulation 

results for a BiQuad benchmark circuit are given in Chapter 3 and compared with 

hardware measurements and compared with hand-calculated theoretical results.  Finally, 

Chapter 4 gives suggestions for future directions on the fault simulator.   
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CHAPTER 2: FAULT SIMULATOR DESCRIPTION 
 
 

 The focus of the fault simulator under consideration is with the analog portion of 

a mixed signal fault simulator.  As discussed in the previous chapter, the more difficult 

issues are on the analog side, whereas there exist well known methodologies for fault 

simulation on the digital side.  In the following, the analog fault simulator is described.  

Experimental results using the simulator are presented in the subsequent chapter.  

2.1 BIST Framework 

 The fault simulator takes, as input, a spice net list describing a circuit and 

simulates randomized versions of the circuit with, and without, faults.  The present fault 

simulator is designed to be used with the built-in self-test (BIST) architecture shown in 

Fig. 2.1.  In the BIST architecture of Fig. 2.1, an input test pattern is generated in digital 

form in the test pattern generator (TPG), and then converted to an analog waveform in the 

digital to analog converter (DAC).  The circuit under test (CUT) is then excited with this 

analog waveform.  The output of the analog CUT is then converted back to digital format 

in the analog to digital converter (ADC) and analyzed in the output response analysis 

(ORA) portion of the system.  The ORA then generates the output metrics, or output 

measures, from the raw data.  The ORA data is then used to classify the analog circuit as 

fault-free or faulty. 
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2.2 Fault Simulator Functional Flow  

 The fault simulator was designed to emulate the BIST framework of Fig. 2.1 and 

simulate the variations in thousands of randomized fault-free and faulty circuits with 

many different test waveforms (TPG) and different output metrics (ORA).  The fault 

simulator generates the data needed to choose the best possible TPG test vector and best 

possible output metric, or to choose the best collection of TPG test vectors and output 

metrics.   

In the fault simulator, the input circuit is first parsed into fundamental 

components, subsequently regenerating randomized versions of the circuit with, and 

without, faults.  The randomizations emulate the normal variations of components in the 

circuit.  The simulator also generates dozens of TPG waveforms to be combined with the 

randomized circuits, in all possible combinations.  Lastly, a separate post processing 

program is used to convert the output data into histograms of the ORA output metric data 

to select the best vector and ORA metric and to determine the fault coverage it provides. 

TPG DAC 

ORA ADC 

Analog CUT 

Analog Portion Digital Portion 

Initialize 

Result 

 Figure 2.1 Built in self test (BIST) framework. 
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 The fault simulator is written in the object oriented language of C++ for 

reusability, platform independence, and low maintenance requirements.  The fault 

simulator is composed of a class library and an executable named faultsim.  In addition, 

SPICE primitives are implemented as class objects in the class library.  The C++ 

compiler and version used is the GNU complier version 3.1, a free ANSI package 

available to the public, without restrictions.  Further details on the class library are found 

later in section 2.4. 

 A functional flow diagram of the simulator is given in Fig.2.2. In the first step of 

Fig. 2.2, the fault simulator takes a SPICE netlist as input.  In the second step, the 

simulator parses the SPICE file into its fundamental components, such as FETS, resistors, 

capacitors, and inductors. [23].    

 In the third step of Fig. 2.2, the circuit file components are randomized 

parametrically and used to create a randomized batch of fault-free circuit files with no 

catastrophic faults.  The randomization in this step is representative of normal variability 

in component values due to manufacturing processes.  Then, faults are inserted by 

replacing components in the same set of parametrically randomized files with each 

catastrophic fault possible in the system.  

 In the “simulation” step of Fig. 2.2, the files are then simulated using the spice 

engine ELDO, the underlying component in the Accusim package from Mentor Graphics.  

The fault simulator currently uses Mentor Graphics ELDO, a proprietary product, but can 

potentially be run on any version of SPICE [24].  Additional inputs to the fault generator 

step include statistics describing the parametric variation of components and the set of 

TPG waveforms under consideration. 
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 In the next step of Fig. 2.2, Output Response Analysis (ORA), the output response 

from the simulations are used to compute the output metrics.  The fault simulator 

produces output files including three ORA metrics, Sout, Sdel, and Smag, found in Table 

2.1.  In the Table, Sout is the sum of output voltages at each clock cycle for some number, 

N, of clock cycles.  Similarly Sdel is the sum of Vout –Vin for some number, N, of clock 

cycles. Similarly, Smag is the sum |Vout-Vin|.  The number, N, of clock cycles for the 

summing of the ORA portion is variable and set at runtime. 

 

 

Net List Parser 

Fault File Generator 

Simulation 

Output Response Analysis 

Histogram Generation 

   Statistics 
         Test Patterns 

Spice Net List 

Figure 2.2 Fault simulator functional flow diagram. 
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 The summations in the ORA metrics of Table 2.1 are floating point summations 

that are often useful for the purpose of investigation.  However, in actual implementation 

the output metrics of Fig. 2.1 are necessarily binary, with limited bit resolution.  So, in 

addition to the floating-point values of Table 2.1, the binary equivalents of Table 2.2 are 

also computed during the fault simulation.  These values are then representative of actual 

ORA data as would be measured in a hardware implementation.   
 In Table 2.2, S16out, S16del, and S16mag are binary 16-bit equivalents of the metrics 

of Table 2.1, where ((x))y is x modulo y [25].  Hence, ((x))65536 is the 16-bit binary 

representation of x.  In Table 2.2, S16out is the 16-bit binary sum of output voltages and 

each clock cycle for some number, N, of clock cycles.  Similarly S16del is the 16-bit binary 

sum of Vout –Vin for sum number of clock cycles and S16mag is the 16-bit binary sum |Vout-

Vin|.  The number of clock cycle durations are variable and set runtime.  The analog 

voltages corresponding to 00 hex and FF hex at the input of the ADC and the output of 

the DAC in Fig. 2.1 are variables set at runtime.   

 

Table 2.1 
Floating point ORA metrics 
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 For the case of the Sout metric of Table 2.1, the floating point output voltage at 

each rising edge of the clock is added to the output voltage of each successive clock cycle 

until the number, N, of user defined TPG clock cycles have elapsed.  The Sout ORA 

metric is then stored.  For the case of the S16out metric of Table 2.2, the 16 bit digital 

output voltage at each rising edge of the clock is added to the digital output voltage of 

each successive clock cycle until the number, N, of user defined TPG clock cycles have 

elapsed.  The BIST system has multiple settings for the resolution of the ADC, DAC, and 

the accumulator.  For the purposes of this thesis, the bit resolution of the ADC, DAC, and 

the final sum are limited to 8, 8, and 16 bits respectively.  

The floating point calculation for Sdel in Table 2.1 computes floating point Vout-

Vin at each clock rising edge and sums them for the predetermined number, N, of clock 

cycles. Similarly, the floating point calculation for Smag computes floating point |Vout-Vin| 

at each clock cycle and sums them for the predetermined number, N, of clock cycles.  

The 16 bit binary calculation for S16del in Table 2.2 computes 1’s compliment 

Vout-Vin. at each clock cycle and sums them for the predetermined number, N, of clock 

Table 2.2 
 Digital ORA metrics 
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cycles.  The subtraction Vout-Vin is implemented using ones compliment subtraction 

where the two inputs are 8 bit unsigned and the output is 16 bit signed.  Similarly, the 

floating point calculation for Smag computes floating point |Vout-Vin| at each clock cycle 

and sums them for the predetermined number, N, of clock cycles.  

 After the “Output Response Analysis” step of Fig. 2.2, the ORA metrics 

associated with each circuit file are stored in ORA files that are later post-processed in 

the histogram generation step.  In this final step of Fig. 2.2, histograms are generated 

showing the distributions of ORA metric values for circuits with, and without, faults.  

The histogram generation step is a separate software program to post-process the ORA 

data.  From the ORA data, the mean and standard deviation can also be calculated.  The 

end result is the statistical data that can be used to select the most effective TPG test 

vector and ORA output metric (Sout, Sdel, Smag, S16out, S16del, S16mag), or collection of test 

vectors and ORA output metrics, for maximum fault coverage.   

2.3 Fault Simulation Architecture 

 The overall operation of the fault simulator has been described in the previous 

section in a functional flow form.  This section provides more detail regarding each of the 

pieces and how they operate together using a more detailed functional flow graph given 

in Fig. 2.3. 

2.3.1 SPICE Input 

 In the first step of Fig. 2.3, the fault simulator reads in the SPICE netlist of the 

device under test(DUT) of Fig. 2.1.  The simulator requires standard SPICE net-list 



16 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Spice Net list 

Parser 

Test Patter 
Generation 

Fault File 
Generation 

Waveform Specs 

FET   R L C 

TPGs 

Spice Engine 

ORA 

Statistical 
Analysis 

Histograms 

Component 
Statistics 

 

 
format; schematic and VHDL entries cannot be read.  SPICE netlist was chosen since it is 

widely used and standardized interface for describing the DUT of Fig. 2.1.     

 Spice was developed at the UC Berkley for circuit simulations and is available as 

open source to the public [23].  SPICE stands for Simulation Program with Integrated 

Circuit Emphasis.  SPICE is a general purpose circuit simulation tool that will run 

Figure 2.3 Fault simulator detailed functional flow graph. 
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nonlinear DC, nonlinear transient and linear ac analysis.  Circuits written using SPICE 

can include resistors, capacitors, inductors, mutual inductors, independent and dependent-

current and voltage sources, lossy and lossless transmission lines, switches, uniform 

distributed RC lines, and five most common semiconductor devices; diodes, BJTs, 

JFETs, MESFETS, and MOSFETS.   A SPICE net list file includes but is not limited to 

information about components, nodal connections, voltage levels, model information, 

various parameters, and input/output parameters.  

2.3.2 Parser 

 In the second step of Fig. 2.3, the parser takes the circuit and reads each line of 

the SPICE file.  The parser stores all of the information given by the file such as node 

connections, component values, and other parameters.  The parser recognizes 

components such as R, L, C and converts them into corresponding C++ class library 

objects, as indicated by the FET, R, L, and C objects below the parser in Fig.2.3 

2.3.2.1 Component Statistics  

 In the upper right of Fig. 2.3, the fault simulator then loads the statistical data 

required to introduce the parametric variations into the component values. The SPICE file 

is randomized the number of times specified, with components varied using a uniform or 

Gaussian distribution according to the specified component statistics.  The SPICE netlist 

file is reconstituted for each catastrophic fault and randomized with the fault by the 

number of parametric randomizations in the simulation.  In this, phase of the simulation, 

the statistics module of the Faultsim library calculates the appropriate Gaussian 

distributed values for the components reflecting the tolerances of the corresponding 

manufacturing processes.    
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 Resistive, inductive, and capacitive components are randomized parametrically 

according to the default parameters shown in Table 2.3.  The components are randomized 

based on process (i.e., lot-to-lot) statistics and single-chip (i.e., within-a-chip) statistics.  

A given process will have a Gaussian probability distribution function (pdf) as shown in 

the top plot of Fig. 2.4.    The second plot in Fig. 2.4 shows the pdf of component values 

on a single chip where the values of the components of a single chip track each other as a 

result of the processing.  This distribution is much tighter, since devices on a single chip 

will tend to track each other. The bottom plot shows that a distribution for another chip 

may have a different mean value, but again with the tighter distribution.    

 
Table 2.3  

 Process statistics 

 
  

 In Table 2.3, the process or, lot-to-lot, variation of resistors are defined with a 

mean of 1 and a standard deviation of 0.1.  This defines a Gaussian distribution of resistor 

values that vary around their nominal value with a standard deviation of 10 percent.  For 

any given single chip, resistors have a Gaussian distribution center around their nominal 

value of four percent as indicated by the single-chip statistics column of Table 2.3 with 

mean 1 and a standard deviation of 0.04 for the resistors. Similarly, capacitor-inductor 

variation is defined by Table 2.3 for lot-to-lot and single chip.   

 

Component Process(chip-to-chip) 
statistics 

Single-chip(within-a-chip) 
statistics 

 PDF µ � PDF µ � 
Resistors Gaussian 1 0.1 Gaussian 1 0.04 

Capacitors Gaussian 1 0.11 Gaussian 1 0.03 

Inductors Gauss 1 0.12 Gaussian 1 0.02 
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 In this, it is not likely for the resistors of a chip to be scattered across the full 

range of lot-to-lot variation.  The processing of chips tends to bias component values on a 

single chip in the same direction giving each chip its own tighter distribution with a 

standard deviation smaller than lot-to-lot variance.  The software implements 

randomization of chips as illustrated in the two lower plots of  Fig. 2.4.    

 The parser uses as many library modules as needed for reading and faulting the 

spice net-list files.  The library contains classes for implementing resistors, capacitors, 

inductors, transistors, and different types of sources.  When reading a file, if a resistive 

component is encountered the parser instantiates a Resistor class object from the Faultsim 

library, which will store the device information for later parsing.  Similarly, other SPICE 

components are implemented as C++ objects in the fault simulation library. 

 

Process PDF 

Chip #1 PDF 

Chip #2 PDF 

Figure 2.4 Statistical models showing process pdf (probability density 
function) in upper trace and two lower traces illustrating single chip 
pdf’s for two different chips.  Lower two traces indicate component 

variations within a single chip or integrated circuit. 
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2.3.3 Test Pattern Generation 

 The upper left of Fig. 2.3 illustrates generating TPG patterns for the fault 

simulation. The candidate test patterns can be found in Appendix B.  These patterns 

include saw-tooth, frequency sweep, and random waveforms of variable amplitude and 

frequency.  TPG patterns are generated by the TPG class object of the Faultsim library as 

a piece-wise linear waveform.  During simulation, the TPG files are then combined with 

the aforementioned randomized circuit files generating all possible combinations of 

parametrically randomized circuits, and TPG waveforms, and faults.  The TPG 

waveforms are stored in files according to waveform, amplitude, and frequency.  The 

clock included in each simulation takes 256 clock cycles(to count through 28 bits), to 

drive the DAC of Fig. 2.1, making the effective waveform frequency equal to the clock 

frequency divided by 256.  This simple relationship between the clock and waveform 

frequency however is not true for certain waveforms such as frequency sweep.  In 

addition, options in the fault simulator allow for varied number of repetitions for the test 

pattern waveform, and hold off and time before collecting ORA data.    

2.3.4 Fault File Generation 

In the fault file generation step of Fig. 2.3, hard faults are injected into copies of 

the original circuit for resistors, capacitors, inductors, and MOSFETS.  A resistive 

catastrophic fault is emulated by placing a 100M� in place of the original resistor value 

for an open, and a 1� resistor for a short.  At present, capacitive opens and inductive 

shorts are simulated as a 2 fF capacitor and 2 fH inductor, respectively.  However, 

capacitive shorts and inductive opens are temporarily implemented as 2 Farad capacitor 

and 2 Henry inductor, respectively, and remain for future implementations otherwise. 
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For transistors, the stuck-off transistor level fault emulated by disconnecting the 

transistor from the circuit with a 100 Meg ohm resistor as shown in Fig. 2.5.  The stuck-

on transistor level fault is emulated by a 1 ohm resistor between the source and drain of 

the transistor as shown in Fig. 2.6. [2]   

 

���������	�
��

 

 

 

 

 
 
2.3.5 SPICE Engine 

 Following the fault file generation step of Fig. 2.3, the SPICE engine used to do 

the simulation is the Mentor Graphics ELDO tool [24].  The main fault simulator, 

Faultsim, executable calls ELDO for all simulations using the command “ELDO 

filename.cir”, where filename.cir is the spice file to be simulated.  The ELDO simulation 

Figure 2.5 Stuck-off fault for transistor illustrating 100 M� series 
resistor used to implement fault. 

Figure 2.6 Stuck-on fault for transistor illustrating 1 � parallel source drain 
resistor used to implement fault. 
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then produces an output file that contains all of the voltage and time data that will be used 

to calculate the ORA metrics.   

2.3.6 ORA 

 In the next step of Fig. 2.3, once a simulation is complete the six ORA metrics, 

Sout, Sdel, Smag, S16out, S16del, S16mag shown in Table 2.1 and 2.2 respectively, are then 

computed and stored in an ORA file.  The ORA files are organized by TPG waveform for 

later classification of test vector efficacy and fault coverage.  Each ORA file contains all 

the ORA data for the particular TPG pattern and for all fault conditions.  Each line of an 

ORA file contains eight items; the circuit filename, the test vector name, and the ORA 

metric values (Sout, Sdel, Smag, S16out, S16del, S16mag) for that combination.  

2.3.7 Statistical Analysis  

 In the final step of Fig. 2.3, statistical analysis, the ORA files are post processed 

using a separate executable program named anarun.   The anarun executable is used to 

produce histograms of the ORA metrics (Sout, Sdel, Smag, S16out, S16del, and S16mag ) of Table 

2.1 and 2.2 which provide a graphical and statistical insight into the efficacy of the test 

vector.  This post-processing tool also computes the mean, standard deviation, and 

variance of the ORA data, as well as, arrange the data for importation to spreadsheet tools 

for graphical interpretation as a histogram.   

2.4 Class Objects 

 As mentioned beforehand most of the functionality in the fault simulator is 

implemented as C++ class objects in the Faultsim library.  The following sections give 

brief descriptions of each of the classes and their functions. 
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2.4.1 Class Resistor 

 Class Resistor implements the resistor and contains data for the name, resistance 

value, and nodes of the device.  The object also includes statistical parameters, and 

member functions for reading, writing, and randomizing a resistor. 

2.4.2 Class Inductor 

 Class Inductor works much in the same way that class resistor does.  Class 

inductor contains data for the name, inductance value, and nodes of the devices.  The 

object also includes statistical parameters, and member functions for reading writing, and 

randomizing a inductor. 

2.4.3 Class Capacitor 

 Class Capacitor, much like classes inductor and resistor, contains data for the 

name, capacitance value, and nodes of the devices.  The object also includes statistical 

parameters, and member functions for reading writing, and randomizing a capacitor. 

2.4.4 Class Ora 

 This class object processes the output files from the spice engine, the .chi files, to 

produce the ORA metrics found in the ORA files.  This class contains member functions 

to search the .chi files for the time and voltage data to compute the output metrics in 

Table 2.1 and Table 2.2.  This class computes the floating point analog ORA metrics as 

well as the digital metrics.  The class object also deletes the rather bulky .chi files after 

storing the results of the ORA metrics in the ORA files. 

2.4.5 Class Gsrc 

 This class object implements the G-model of spice, or a voltage controlled current 

source.  This class contains member functions to process the nodes of the input and 
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output along with the transconductance of the model.  At present the object does not 

introduce faults or randomize this component.   

2.4.6 Class Vsrc 

 This class object implements the independent voltage and stimulus source in 

SPICE.  This class contains the data for reading, storing, and writing the nodes and 

voltage values of independent voltage sources.  At present these components do not 

implement fault or randomization.   

2.4.7 Class Circuit              
  
 This class handles the circuit level functions of the parser.  The class objects loads 

circuit level objects and segments the tasks of to lower level objects contained therein.  

This class contains the data for the complete netlist in the form of a collection of objects 

appropriate to the corresponding components of the original. 

2.4.8 Class DotEnds     

 This class implements the “.ends” statement that signals the end of a sub-circuit in 

spice.  This object performs the task reading, storing, and writing the “.ends” statements 

found in SPICE files.   

2.4.9 Class Other 

 This class implements any SPICE token that is not implemented in one of the 

other class libraries. This class contains the functions and data for reading, storing, and 

writing all SPICE statements listed in the Other class member functions.  These 

statements include, but are not limited to .ac, .dc, .plot, .print, .probe, .step, .temp etc.  

There are no functions for faults or randomization in this class. 
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2.4.10 Class Xsubckt 
 
 This class is used for SPICE sub-circuit level statements which typically 

correspond to one line in a SPICE file.  This class contains the member functions for 

reading, storing, and writing the sub-circuit level statements found in SPICE files.   

2.4.11 Class CircuitStats  

 This class contains the all the functions and data to implement the process (lot-to-

lot) and single-chip (within a single Integrated circuit) statistical characteristics of the 

randomizer as described in section 2.3.2.  This class contains a wide array of statistical 

functions to implement within-chip as well as process (chip-to-chip) pdf's into the 

randomization of the SPICE file. 

2.4.12 Class DotSubckt 

 Class DotSubckt implements the SPICE statement “.subckt,” a definition for a 

sub-circuit in a SPICE file.  This class contains the functions and data for reading, 

storing, and writing the nodes and names of the sub-circuits of SPICE.  This class object 

has no faults or randomization. 

2.4.13 Class Isrc  

 Class Isrc implements the SPICE independent current source statements found in 

SPICE files.  This class contains the functions and data for reading, storing, and writing 

the nodes and values of independent current sources.  This class has no faults or 

randomization.   

2.4.14 Class Comment  
  
 Class Comment implements the comments of SPICE that are denoted by the “*” 

character.  This class contains the member functions to identify comments, read 
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comments, and write comments.  This class deals only with the contents of comments and 

therefore has no statistical functions.   

2.4.15 Class Esrc    

 The Esrc implements the SPICE voltage controlled voltage source statements.  

This class contains the member functions to recognize, read, store, and write E models 

found in SPICE files.  At present, there are no faults or randomization built into this 

class. 

2.4.16 Class Statistics     

 Class Statistics implements statistical functions that are used in CircuitStats class 

to generate randomized values from the statistical mean and standard deviation.  This 

class and its member functions do not operate directly on any given component but do 

serve as support to the process of randomization.  

2.4.17 Class Component 

 Class Component identifies each component level object that would be found in a 

SPICE netlist and acts as a container for particular components.  Class component 

contains the member functions to identify components and execute the proper member 

classes according to the type of component.  This class does not implement statistical 

randomization or faults. 

2.4.18 Class Mos  

 Class Mos implements the MOSFET component and contains data for the name, 

channel size, and nodes of the device. The object also includes statistical parameters, and 

member functions for reading, writing, and randomizing a MOSFET transistor.  This 

class also implements the stuck-on and stuck-off faults illustrated in Figs. 2.5 and 2.6. 
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2.4.19 Class Faultlist 

 Class Faultlist implements the generation of fault lists based on the circuit being 

simulated.  This class contains the functions for generating fault lists for shorts and opens 

of R, L, C, and MOS components.   

2.4.20 Class Tpg            

 Class Tpg contains the member functions that create TPG test waveforms based 

on input parameters of clock frequency, waveform, amplitude, repetitions, and hold off 

for ORA calculations.  The Tpg class generates piecewise linear stimulus in SPICE 

format and can store the SPICE code in files. 

2.4.21 Class Data 

 Class Data implements the various functions needed for processing generic data 

arrays used in various places throughout the fault simulator.   

2.5.1 Computational Complexity 

 The task of fault simulation presents formidable computational complexity for 

even modest circuits.  To illustrate this complexity, consider the operational amplifier 

shown in Fig. 4.1, with only 11 components.   If each component has two faults, an open 

and a short, there are 22 potential faults for the circuit.  Two hundred randomized netlist 

files for each fault plus the fault-free file would result in (22+1)×200=4600 circuit files.  

If each file is simulated at three frequencies, 10 waveforms, and two amplitudes there are 

(22+1) ×200×3×10×2= 276,000 netlist files to be simulated.   

2.5.2 Computational Time 

 The foregoing complexity leads to long computational times.  In experiments, the 

operational amplifier circuit of the previous section has an average simulation time of 
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eight seconds based on current computing equipment.  The computing environment 

available is a Sun Microsystems SPARC Ultra 80 with four 450 MHz processors and 2 

GB of main memory.  If the 276,000 circuit files were simulated sequentially this would 

amount to 25.5 days to simulate the circuits.  Also, some waveforms take considerably 

longer to simulate than others depending on faults and various other conditions such as 

frequency and amplitude. Therefore, an approximation of the time for simulating the 

operational amplifier of Fig.4.1 is nearly one month.  The linear nature of the problem 

dictates that doubling the number of components would double the simulation time, 

meaning a circuit with 22 components would require nearly 2 months to simulate.    

2.5.3 Parallel Processing 

 The huge simulation times associated with even small circuits (as outlined in the 

previous section) provides impetus to use parallel processing in the spice engine portion 

of Fig. 2.3.  This parallelization effort provided for a linear reduction in the amount of 

time based on the number of parallel threads up to the number of processes on the parallel 

processing machine.  A simulation with two threads ran twice as fast with a simulation 

with one thread.  Experimental results show this to be true when simulating the BiQuad 

filter shown in Fig. 3.7.   The BiQuad filter with 15 components, 160 randomizations, 3 

frequencies, and one waveform can be simulated in one day with 4 threads versus 3 days 

with one thread on a 4-processor machine.   

 The fault simulator was parallelized by making changes to the main executable 

faultsim.  Parallel threads were implemented with the functions fork() and wait() which 

spawn parallel processes and close them when they are finished respectively.  The 

program allows a user definable number of parallel processes, threads to be used for a 
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simulation.  The program then creates a process subdirectory for each thread.  After the 

parallel threads finish, the results are then collected and stored in a separate common 

ORA subdirectory incrementally as the circuit simulations complete for all possible 

combinations of TPG waveforms, faults, and parametric randomizations.   

2.6 Faultsim 

 Faultsim is the main executable of the fault simulator.  Faultsim controls the flow 

of Fig. 2.2 and Fig. 2.3.  The only flow not controlled by faultsim is the post processing 

executable anarun, the program that generates the histogram for the ORA results as the 

last steps of Figs. 2.2 and 2.3.   
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Figure 2.7 Faultsim help screen showing description of command-line parameters and 
example command-line. 



30 

 Typing faultsim at the command line, as shown in Fig. 2.7, will display a help 

screen that lists the command-line parameters and a brief explanation of each.  Faultsim 

is controlled by the following parameters: ckt.cir, numproc, numrand, inpos, inneg, 

outpost, outneg, vbias, vamp, maxcpu, vomin, vomax, and numrep.  The first parameter 

ckt.cir is the name of the SPICE netlist file that must be in the directory in which faultsim 

is running.  The next parameter, numproc, is the number of processes, or threads that 

faultsim will spawn in the simulation stage.  The parameter numrand is the number of 

randomizations for each fault and for the good circuit.  The parameters inpos and inneg 

are the node names of the positive and negative input voltages of the SPICE file.  These 

are used to merge the TPG waveforms (as SPICE commands) to the circuit input.  The 

parameters outpos and outneg are the positive and negative output nodes at which the 

output will be taken and analyzed.  The parameter vbias is the DC bias level of input TPG 

waveform.  The parameter vamp is the amplitude of the input TPG waveform to be 

tested.  The parameter maxcpu sets the timeout of a single ELDO simulation.  This is 

often necessary as certain faults will cause simulations not to converge or converge 

slowly.  The parameters vomin and vomax set the voltage range of the ADC in the BIST 

framework.  The last parameter, numrep, is the number of repetitions that the simulation 

will process of each waveform (each repetition being 256 clock cycles).   
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CHAPTER 3: EXPERIMENTAL RESULTS 
 
 

 The fault simulator results were compared to theoretical and experimental 

hardware results for a BiQuad filter.  The hardware BiQuad filter was designed and built 

by Clark Hopper and Steven Tucker working under the direction of Dr. David Binkley.   

In this chapter, the fault simulator is validated by comparison to theoretical 

analysis (hand calculations) and experimental hardware.  The focus is on validating the 

ability of the simulator to predict hardware functionality and therefore a particular TPG 

waveform is employed which may or may not be the best test vector for this circuit.  

Nevertheless, the chosen waveform suffices for the purpose of validating the fault 

simulator.   

3.1 Biquadratic Filter Circuit 

 The circuit used for the verification of the fault simulator was a Kerwon-

Huelsman-Newcomb biquadratic filter shown in Fig.  3.1[22].  The BiQuad filter has 

band pass, low pass, and a high pass outputs.  The cutoff frequency for all three filter 

types is set by R and C from the components in feedback of the circuit shown in Fig.  3.1. 
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Figure 3.1 BiQuad filter circuit used for benchmarking fault simulator 
against hardware. 

Figure 3.2 Frequency response of BiQuad filter shown in Fig. 3.1 with 1 kHz 
cutoff frequency for high-pass, low-pass, and band-pass. 

 

           Frequency 

10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 
V(D11:1) V(R4:1) V(R3:1) 

0V 

200mV 

400mV 

600mV 

800mV 
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The cutoff frequency for the experimental hardware is 1 kHz as shown by the frequency 

response plot of Fig. 3.2.  Fig. 3.2 is the frequency response of the circuit of Fig. 3.1, 

showing the band-pass, low-pass, and high-pass cutoff frequency of 1 kHz.  The 

frequency response plot also shows the circuit has a gain of approximately one half for all 

the pass band regions.  The gain of the BiQuad filter is set by the components R1b and 

R7 of the circuit shown in Fig.  3.1[22].  
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3.2 Modeling the BiQuad Efficiently  

 The BiQuad filter circuit of Fig. 3.1 used to collect hardware experimental results 

was implemented with AD820A/AD operational amplifier, shown in the operational 

amplifier circuit of Fig. 3.3.   

 

 
Figure 3.3 BiQuad hardware implementation using AD820 amplifier. 
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 The AD820A/AD contains 26 transistors each, making the fault simulation of all 

internal components of the three AD820A/AD amplifiers far too time consuming.  

Furthermore, the test lab would be unable to test faults at the transistor level for the 

AD820A/AD package for comparison against fault simulator data.  For these reasons, a 

reduced order model was implemented to emulate the AD820/AD amplifier with a 

voltage controlled voltage source (VCVS), a current limiting resistor, two diodes and a 

five volt supply as shown in Fig.  3.4. 

 
 

 

  

 

 In Fig. 3.4, the AD820A/AD is modeled by a (VCVS) along with diodes to cause 

clipping, and resistive output impedance.  In Fig. 3.4, the VCVS emulation of the 

AD820/AD, the input signals are applied to the positive and negative input nodes of the 

VCVS.  The gain of the VCVS is set to 106.  One problem with using the ideal VCVS is 

the model has no mechanism for clipping, and so the diode network is added to induce 

clipping. When the output voltage of Fig. 3.4 goes below -.5 volts, which is below the 

Figure 3.4 Emulation of AD820A amplifier used in BiQuad circuit design 
ideal voltage controlled voltage source, two diodes and output impedance 

resistor. 
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threshold voltage for the diode, the diode to ground turns on and shorts the output of the 

circuit to ground.  When the output voltage goes above 5.5 volts and breaks the threshold 

of the diode to the 5-volt supply, the diode limits the output of the E-source to the 5-volt 

supply.  These diodes keep the output of the model of the amplifier, in Fig. 3.4, in the 

range of 0 to 5 V similar to the AD820A/AD.  In future work the 5 V source will be 

dropped to 4.5 V so the voltage clips at 5 V, similarly the grounded terminal should be 

set to .5 V so the other rail clips at 0 V.  

 Another modification to the circuit of Fig. 3.1 included adding an inverting VCVS 

to the front-end of the BiQuad filter to account for the inverting amplifier used in the 

experimental hardware, shown following the DAC in the schematic of Fig. 3.18.  The 

VCVS with gain of one, shown in Fig. 3.5, has the input signal connected to the positive 

input node of the VCVS with the negative input of the VCVS tied to the 5 volt supply.   

 
 

 
Figure 3.5 Inverting amplifier for input of BiQuad circuit used to translate 0 

to 5 volt input to 5 to 0 volt output. Gain of VCVS is -1. 
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 The circuit of Fig. 3.5, inverts the input signal and adds a 2.5-V DC offset.  When 

the input is 0 volts the output becomes 5 volts, when the input is 5 volts the output will be 

0.  The negative terminal of the VCVS output is connected to ground and the final output 

signal of Fig. 3.5 is taken from the positive output.  The aforementioned changes to the 

circuit are to expedite fault simulation by faster circuit simulation times and to provide 

models representative of the behavior of the original hardware experimental circuit. 

 Figure 3.18 contains hardware realization used the BIST system of Fig. 2.1.  This 

system was used to obtain the hardware experimental results and was also the model used 

for the fault simulator.  In Fig. 3.18, found at the end of the chapter, the full hardware 

realization of the fault simulator containing the inverting amp of Fig. 3.5, the DAC and 

ADC of Fig. 2.1, the BiQuad of Fig. 3.1, and the TPG discussed in section 2.3.3. 

3.3 Theoretical Results (Hand Calculations) 

 In this section, theoretical results are presented for several faults, so later these 

results may be compared with simulation results to validate the fault simulator.  In 

particular, theoretical results are calculated for all six ORA metrics for three faults which 

produced the same output condition.  These three faults were selected because of the 

simplicity of the hand calculations.  The calculations illustrate ORA computation and 

provide baseline theoretical values for the ORA metrics.  For the purposes of discussion 

and verification, the waveform employed for testing was the count-up  waveform (Cup 

waveform Appendix B) at 19.5kHz effective waveform frequency (5MHz TPG clock 

frequency), 5 V amplitude, 2.5V DC offset, for one cycle (256 clock cycles) with no 

hold-off for initialization.  Unless otherwise indicated, the remainder of this chapter 
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discusses results for this TPG waveform with the aforementioned conditions and refer to 

the high pass output of Fig. 3.1. 

3.3.1 Calculation for Specific Fault Conditions 

 For the case of the circuit of Fig. 3.1 without faults, a SPICE simulation showing 

the input as the lower trace and high pass output as the upper trace is given in Fig.  3.6. 

 
 

           Time

0s 100us 200us 300us 400us 500us 600us 700us 800us
V(E7:3)

0V

2.5V

5.0V

SEL>>

V(R3:1)
0V

2.5V

5.0V

 
 

 

  

 The saw-tooth waveform in the lower trace in Fig. 3.6 going from 0 to 5 volts at a 

frequency of 19.5 kHz is the input signal to the BiQuad circuit of Fig. 3.1.  The high pass 

output is the saw-tooth signal in the upper trace of Fig. 3.6, with  2.5 V peak-to-peak 

centered around 2.5 volts.  The 2.5 V peak-to-peak value of the output is consistent with 

the predicted gain of .5 for the BiQuad circuit.  The DC offset of 2.5  in the upper trace of 

Figure 3.6 SPICE simulation of circuit of BiQuad showing input (lower 
trace) and output (upper trace).  Transient output response due to initial 

conditions is visible in the output plot. 
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Fig. 3.6 is also consistent with the expected operation of the BiQuad filter circuit shown 

in Fig. 3.3, given the 2.5-V virtual ground shown biasing the filter.  Although a high-pass 

circuit should ideally have no DC offset, it can be seen in Fig. 3.6 that the output of the 

circuit is initially offset above the 2.5 V DC virtual ground, and then levels out centered 

at 2.5 V around 750µs.  This can be attributed to the transients of the circuit, and these 

effects are later considered in section 3.6 when comparing the ORA metrics with the 

experimental hardware.  Since the simulation was run with no hold off and for only one 

cycle, these transient effects can be expected to contribute to the measured ORA metrics.   

 Table 3.1 lists the faults for the BiQuad circuit of Fig. 3.3.  From the fault list 

shown in Table 3.1, three faults were selected that give the output condition of a constant 

2.5 volts, as in Fig. 3.7.    

 
 

           Time

0s 100us 200us 300us 400us 500us 600us 700us 800us
V(E7:3)

0V

2.5V

5.0V

SEL>>

V(D2:1)
0V

2.5V

5.0V

 

 
Figure 3.7 SPICE plot showing input (lower trace) and output (upper trrace) 

of faulty BiQuad circuit with 2.5-V DC output condition.  
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The three faults that produce this 2.5-V constant output condition are R3 short, R2 short,  
 
and R1b short shown in Table 3.2 below. 
 
 

Table 3.1 
Fault List for BiQuad filter circuit simulation 

Fault List 
Component Fault 

R3 Open 
R3 Short 
R4 Open 
R4 Short 
R5 Open 
R5 Short 
R6 Open 
R6 Short 
R2 Short 
R7 Open 
R7 Short 
C1 Open 
C2 Open  

 
 

Table 3.2 
List of Specific Components and Faults for ORA Confirmation were Vout is a constant 2.5 

VDC 
Component Fault Output Condition 

R2 Short 2.5 volts 
R3 Short 2.5 volts 
R1b Short 2.5 volts 

 

 The SPICE simulation of the three fault conditions shown in Table 3.2 produced 

the output (2.5-VDC) shown in the upper trace of Fig. 3.7, with a saw-tooth input shown 

in the lower trace.  These faults were chosen because they offer easily calculated ORA 

metrics.   
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3.3.1.1 Sout Floating Point Calculation 

 The cases of Table 3.2 with an output voltage stuck at 2.5 V and with the input 

going from 0 to 5 volts over 256 clock cycles is a useful condition for validation since it 

provides simple hand calculations.  In this case, Sout becomes: 
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   For more complex signals, the summation can be viewed as an integral or area 

under the Vout curve.  For the present example, the Sout metric is analogous to the area of 

the rectangle (i.e. the integral of the rectangle) shown in Fig. 3.8.  Given that the result is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

5V 

2.5V 

256 clock cycles 

256 clock cycles * 2.5 V = 640 for Ssum ORA metric 

Area of Summation  

Figure 3.8 Illustration showing area corresponding to the fault for 2.5-V 
output condition of Fig. 3.7 over 256 clock cycles for computing Sout metric. 

The area is 2.5x256=640. 
 
 
for one TPG waveform cycle only (256 clock cycles), Sout would equal the area of a  
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rectangle with base=256 clock cycles and height=2.5 V with area 256x2.5=640.  This is  
 
the area of the rectangle in Fig. 3.8.  

3.3.1.2 Sdel Floating Point  

  The cases of Table 3.2 with an output voltage stuck at 2.5 V are used for 

Sdel since it provides simple hand calculations. The Sdel metric subtracts the voltage of the 

input from the output voltage at each clock cycle and sums the result over the number of 

specified clock cycles.  Only one cycle of the TPG waveform (256 clock cycles) is used 

for the simulation under consideration.   In the upper left of Fig. 3.9, Vout is represented 

as a 2.5-VDC constant for 256 clock cycles.  In the upper right, Vin is represented as a 

ramp from 0 to 5 volts for those same 256 clock cycles.  At the bottom is the difference 

of the upper two figures representing Vout –Vin for same 256 clock cycles.  In this case, 

Sdel becomes:   
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For more complex signals, the summation can be viewed as an integral or area under the 

Vout - Vin.  For the present example, the Sdel metric is analogous to the area under the 

curve at the bottom of Fig. 3.9.  Given that there is equal positive and negative area under 

the curve of Fig. 3.9, the net result should be at or near 0.   

3.3.1.3 Smag Floating Point 

 The cases of Table 3.2, with an output voltage stuck at 2.5 V, are used for Smag 

since it provides simple hand calculations.  The Smag metric sums the absolute value of 

the difference of the input subtracted from the output.  Only one cycle of the TPG 

waveform (256 clock cycles) is used for the simulation of discussion.   In the upper left 
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of Fig. 3.10 Vout is represented as a 2.5-VDC constant for 256 clock cycles.  In the upper 

right, Vin is represented as a ramp from 0 to 5 volts for those same 256 clock cycles.  In 

the lower left is the difference of the upper two figures representing Vout –Vin for same 

256 clock cycles.  In the lower right is the magnitude of the difference of the upper two 

figures representing |Vout –Vin| for same 256 clock cycles. 

In this case, Smag becomes: 
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For more complex signals, the summation can be viewed as an integral.  For the present  

example, the Smag metric is analogous to the area of the two triangles in the lower right of 

Fig. 3.10.  Given that the result is for one saw-tooth cycle only, Smag 

Net Result = 0 

Figure 3.9 Illustration showing area corresponding to the fault for 2.5-V 
output condition over 256 clock cycles for computing Sdel metric.  The top 

left plot is the output waveform, the top right plot is the input waveform, and 
the bottom waveform is the resultant subtraction of the two upper plots.  The 
lower plot with equal areas above and below the time axis have a net result 

of zero. 

5V 

2.5V 

5V 

2.5V 

Vout Vin 
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256 clock cycles 256 clock cycles 

256 clock cycles 

Equal Areas 
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would equal the area of the two triangles, with base=128 clock cycles and height=2.5 

volts for each triangle, with area 128x2.5/2=160 for a total area of 320 in both triangles.   

3.3.1.4 Summary of Floating Point Calculations 

 Table 3.3 summarizes the theoretical predicted values for the three floating point 

ORA metrics Sout, Sdel, and Smag for the case of Table 3.2 where the output is stuck at 

2.5V.   

Table 3.3  
The theoretical floating point values for ORA metrics Sout, Sdel, and Smag for the fault in 

Table 3.2 with 2.5-VDC output with saw-tooth input over one cycle 
ORA metric Expected Floating Point Value 

Sout 640 
Sdel 0 
Smag 320 

 

5V 

2.5V 

Vout Vin 

2.5V 

-2.5V 

5V 

2.5V 

= 

2.5V 

-2.5V 

Net Result = 320 

256 clock cycles 256 clock cycles 

256 clock cycles 256 clock cycles 

Equal Areas 

Figure 3.10 Illustration showing area summed for 2.5-V output condition 
over 256 clock cycles for Smag metric.  Top left is output waveform, top right 
is input waveform, bottom left is result of subtraction of output from input, 

and bottom right is magnitude of bottom left. 
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3.3.2 Digital ORA Metrics 

 Whereas the floating point ORA metrics of the previous sections are useful for 

investigation, the digital ORA metrics S16out, S16del, and S16mag are used for direct 

comparison between the fault simulator and the experimental hardware.  The BIST 

system under consideration has an ADC and a DAC of 8-bits, and accumulator of 16-bits, 

which performs the summation of Table 2.2.  The ADC and the DAC analog voltage 

ranges are 0 to 5 volts, with 00 hex corresponding to 0 V and FF hex corresponding to 

5V.  

 The test waveform of one cycle of cup was selected because it would not 

overflow the accumulator regardless of the output voltage.  In the worst case, one would 

have 256 clock cycles of FF hexadecimal ADC output added in the accumulator.  This 

would result in a final accumulator value of FFFF in hexadecimal.  For the case of the 

mid rail voltage of 2.5 V(as in the faults of Table 3.2), or a 7F in hexadecimal, times 256 

clock cycles gives 7F00, or 32767 in decimal, which is half of the maximum value of the 

accumulator.  Therefore, the accumulator will not overflow for the cases under 

consideration.   

3.3.2.1 S16out Digital Value 

 The cases of Table 3.2 with an output voltage stuck at 2.5 V are used to calculate 

S16out since it provides simple hand calculations. The S16out metric adds the digital output 

voltage at each clock cycle and sums the result over the number, N, of specified clock 

cycles.  Only one cycle of the TPG waveform (256 clock cycles) is used for the 

simulation under discussion.   In Fig. 3.8, the 2.5-VDC output Vout would correspond to 

an ADC digitized value of 7F hexadecimal, or 127 decimal.  In this case, S16out becomes: 
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where 32512 decimal is 7F00 hexadecimal.  This can also be confirmed by summing 7F 

hexadecimal 256 times decimal to get 7F00 hexadecimal, or 32512 decimal.   

3.3.2.2 S16del Digital Value  

 As in the calculation of S16out, the cases of Table 3.2 with an output voltage stuck 

at 2.5 V are used to calculate S16del since it provides simple hand calculations. The S16del 

metric subtracts the digitized voltage of the input from the digitized high pass output 

voltage at each clock cycle and sums the result over the number, N, of specified clock 

cycles.  Only one cycle of the Cup TPG waveform (256 clock cycles) is used for the 

simulation under discussion.   In the upper left of Fig. 3.9, Vout is represented as a 2.5-

VDC constant, corresponding to digitized value of 7F hex, for 256 clock cycles.  In the 

upper right of Fig. 3.9, Vin is represented as a ramp as 5 volt for those same 256 clock 

cycles, corresponding to a ramp from 00 hexadecimal to FF hexadecimal after 

digitization.  The subtraction is a 1’s compliment subtraction with Vout and Vin unsigned 

8-bit and with the output 1’s compliment signed 16-bit.  In this case S16del becomes: 
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The digital result of 0 for S16del corresponds to the analog answer of 0 for Sdel.    

The digital method of subtraction varies from the floating point in that the subtraction is 

done using the ones complement and the input values Vout and Vin are unsigned.   

 

 



46 

3.3.2.3 S16mag Digital Values 

 The cases of Table 3.2 with an output voltage stuck at 2.5 V are used to calculate 

S16mag since it provides simple hand calculations. The S16mag  metric at each clock cycle 

subtracts the digitized voltage of the input from the digitized high pass output voltage, 

and then takes the absolute value and sums the result over the number, N, of specified 

clock cycles.  Only one cycle of the TPG waveform (256 clock cycles) is used for the 

simulation of discussion.   The digitization of the corresponding signals in Fig. 3.10 

follows in the manner as digitization of Fig. 3.9 described for S16del in the prior section. 

Again, the subtraction is a 1’s compliment subtraction with Vout and Vin unsigned 8-bit 

and with the output 16-bit 1’s compliment signed.  In this case, S16mag becomes: 
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The digital result of 16256 for S16mag corresponds to the analog answer of 320 for 

Smag.  The digital method of subtraction varies from the floating point in that the 

subtraction is done using 16-bit 1’s complement, the input values of Vout and Vin are 8-bit 

unsigned and the output is 16-bit signed.  The value 16256 for S16mag should be half of the 

S16out value of 32512 as evident by comparing Figs. 3.9 and 3.10.  

3.3.2.4 Summary of Digital Calculations 

 Table 3.4 summarizes the theoretical predicted values for the three digital ORA 

metrics S16out, S16del, and S16mag for the case of Table 3.2 where the output is stuck at 

2.5V.   
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Table 3.4 
 The theoretical digital values for ORA metrics S16out, S16del, and S16mag for the fault in 

Table 3.2 with 2.5-VDC output with saw-tooth input over one cycle 
ORA Metric Expected Digital Value (decimal) 

S16out 32512 
S16del 0 
S16mag 16256 

 

3.4 Simulation Data for BiQuad Filter Circuit 

 The BiQuad circuit of Fig. 3.1 was simulated using the reduced order model of 

Fig.  3.3 (replacing the operational amplifiers with the reduced order models of Fig. 3.4) 

for comparison against the theoretical values from section 3.3.  In section 3.5, simulation 

results are compared to hardware experimental results.   

In the simulations, the BiQuad filter circuit of Fig. 3.3 was simulated with count-

up(Cup) ramp waveform with no initialization cycles and one repetition of the TPG 

pattern (256 clock cycles).  The simulation was run for 160 randomizations per fault and 

for the fault-free circuits.  The fault simulation was executed with the following 

command line: 

faultsim biquad.cir 8 160 11 0 2 0 2.5 5 60 0.5 4.5 1  

In this command line, biquad.cir is the circuit SPICE file for the reduced order 

model version of the circuit of Fig. 3.3.  The second field, numproc=8, is the number of 

parallel processes that are forked to run in parallel on a multi-cpu machine.  The third 

field, numrand=160, is number of randomizations due to parametric variations of normal 

components that are done per fault.  In the fourth and fifth fields, inpos=11 and inneg=0, 

are positive and negative differential input nodes in the SPICE file.  In the sixth and 

seventh fields, outpos=2 and outneg=0 are positive and negative differential output nodes 

for the SPICE file. The eighth field, vbias=2.5 is the TPG waveform DC bias, where 
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inpos=vbias+(vamp/2), inneg=vbias-(vamp/2) and if vbias=0, the input is true floating 

differential input.  The ninth field, vamp=5, is the test pattern amplitude in volts.  The 

tenth field, maxcpu=60, is maximum number cpu seconds allowed per SPICE run.  The 

eleventh and twelfth fields, vomin=.5 and vomax=4.5, is the differential output voltage 

range where 00 hexadecimal corresponds to vomin and FF hexadecimal corresponds to 

vomax for ADC converter of Fig. 2.1.  The last field, numrep=1, is the number or 

repetitions to execute TPG waveform (1 repetition= 256 clock cycles).  By default, three 

frequencies are simulated and the hold-off for collecting ORA data is 0.  In addition, 

waveforms are hard-coded in faultsim at this present version of the software.  The 

waveforms and frequencies must be selected before recompiling the faultsim executable.   

After completion of fault simulation, the raw ORA data is contained in the ORA 

files.  The ORA files are then processed in a post-processing executable named anarun.  

The post-processing takes the ORA files and generates excel spreadsheets for histograms 

of the six ORA metrics for each TPG waveform.  The post-processing program also 

calculates the mean, variance for each fault for the six analog and digital ORA metrics 

Sout, Sdel, Smag, S16out, S16del, and S16mag.    

3.4.1 Analog Results for Fault Simulator  

 In this section, simulation results for the analog metrics, Sout, Sdel, and Smag, are 

compared against the theoretical results.  The histogram for the Sout analog output metric 

is shown in Fig.  3.11.  In Fig. 3.11, the histogram for a fault-free unit is shown as a solid 

line and the faulty circuit histogram is shown as a dotted line.  The faulty circuit 

histogram is a composite of all the faults formed by summing all the faulty histograms 

and dividing by the number of faulty histograms.  (Histograms showing good circuits and 
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a single fault, for all faults listed in Table 3.1, can be found Appendix F.)  The vertical 

axis gives the number of units falling within a certain ORA metric range bin and the 

horizontal axis is the ORA metric value, i.e., Sout.  This convention will be used for all 

histograms contained hereafter.  The figure shows faulty circuits clustered around 

Sout=640 mark.  These faulty circuits correspond to the three resistive shorts given in 

Table 3.3 that produce the mid-rail DC voltage of 2.5 volts.    

 The histogram of  Fig. 3.11 also shows a cluster of faults that fall in the same 

range as the good circuits.  Because faults in many components affect the output of the 

count-up waveform only slightly, these other faulty circuits have Sout values that are 

clustered around the fault-free circuit histograms.   These faults, which affect the count-

up output only slightly, are listed in Table 3.5.    Although these faults are not detectable 

with the present waveform, previous work on the BiQuad filter has shown that these 

faults can be detected with other waveforms [28]. 
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Figure 3.11 Fault simulator results for analog Sout ORA metric for BiQuad 
filter at 5 MHz clock frequency (19.5 kHz effective waveform frequency), 
Cup waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range.  The 

dotted histogram is a composite of all faults rescaled and normalized relative 
to the solid histogram which is the histogram for fault-free circuits. 
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For the cases of Table 3.2 that were used to calculate theoretical results, Table 3.6 

shows percent error between theoretical and simulated results for analog Sout.  In Table 

3.6, the first column lists the fault, the second column gives the theoretical value of Sout, 

and the third column gives the mean value of the simulated Sout for 160 randomized 

circuits for that particular fault (160 randomizations set by the faultsim command line).  

In Table 3.6, the percent error is calculated by dividing the difference between the mean, 

µ, in column two and the theoretical value, t, in column one and dividing the theoretical 

value, t, in column one, and finally multiplying by 100 to obtain the percentage.  This 

calculation is shown in equation 3.3 below. 

100×−=
t

t
e

µ   (3.3) 

  Table 3.6 shows, for the analog Sout metric, that the fault simulator results are 

within 5 percent of the theoretical results.   

 
Table 3.5  

Faults with only slight effect on the output of BiQuad filter for count-up waveform at 
19.5 kHz 

Component Fault 
R3 Open 
R4 Open 
R4 Short 
R5 Open 
R5 Short 
R6 Open 
R6 Short 
R7 Open 
R7 Short 
C1 Open 
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Table 3.6  
Sout comparison of analog theoretical values against fault simulator results  

Fault Theoretical Value of Sout Fault Simulator mean value % error(eq 3.3) 
R2 short 640 665.629 4.1 
R3 short 640 665.658 4.1 
R1b short 640 665.786 4.1 

 
 
The histogram for the Sdel analog output metric is shown in Fig. 3.12.  In Fig.  

3.12, the fault-free circuit histogram is shown as solid line and the composite faulty 

circuit histogram is shown as a dotted line.  The faulty circuit histogram is a composite of 

all the faults formed by summing all the faulty histograms and dividing by the number of 

faults (See Appendix F for histograms of single faults and fault-free circuit for each 

fault).  The vertical axis gives the number of units within a certain ORA metric range bin 

and the horizontal axis is the ORA metric value, Sdel.  The figure shows a cluster of faulty 

circuits cluster around Sdel=0.  These faulty circuits correspond to the three resistive 

shorts given in Table 3.3 that produce the mid-rail DC voltage of 2.5 volts.     
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Figure 3.12 Fault simulator results for analog Sdel ORA metric for BiQuad 
filter at 5 MHz clock frequency (19.5 kHz effective waveform frequency), 
Cup waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range.  The 

dotted histogram is a composite of all faults rescaled and normalized relative 
to the solid histogram, which is the histogram for fault-free circuits. 
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Table 3.7 shows the error for the theoretical values for the Sdel metric.  The 

percent error calculation in equation 3.3 is not appropriate for Table 3.7 since the 

theoretical value is 0.  Therefore, the error is simply defined as the difference. 

 
 

 
 

The histograms in Fig. 3.12 also show the overlap of faults listed in Table 3.5 

with the fault-free histogram, corresponding to undetectable faults for this waveform.   

  Finally, the histogram for the Smag analog output metric is shown in Fig. 3.13. In 

Fig. 3.13, the fault-free circuit histogram is shown as solid line and the composite faulty 

circuit histogram is shown as a dotted line.  The vertical axis gives the number of units 

within a certain ORA metric range bin and the horizontal axis is the ORA metric value, 

Smag.  The figure shows a cluster of faulty circuits around Smag=320.  Unlike Sout and Sdel, 

it is not possible to resolve a separate cluster corresponding only to the three faults given 

in Table 3.3 that produce the mid-rail DC voltage of 2.5 V.   

 Although the histogram does not show a separate cluster corresponding to the 

theoretical results for the faults of Table 3.3, comparisons between theoretical and 

simulated values may yet be made.  Table 3.8 shows that the simulated values for the 

Smag ORA metric for analog data have approximately 1 percent error from the theoretical 

value.  The percent error calculation in Table 3.8 uses equation 3.3, with corresponding 

µ, and t. 

 

Fault Theoretical value of Sdel Fault Simulator mean value Error 
R2short 0 47.97 47.97 
R3short 0 48.00 48.00 
R1bshort 0 48.12 48.12 

Table 3.7 
Sdel comparison of analog theoretical values against fault simulator results  
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Table 3.8 
Smag analog theoretical values compared with fault simulator results 

Fault Theoretical Value of Smag Fault Simulator mean value % error(eq3.3) 
R2short 320 322.65 .80 
R3short 320 322.85 .80 
R1bshort 320 322.81 .80 

 
 
3.4.2 Digital Results for Fault Simulator  

 In this section, simulation results for the digital ORA metrics S16out, S16del, S16mag 

are compared against theoretical results.  The histogram for the S16out digital output 

metric is shown in Fig. 3.14.  In Fig. 3.14, the fault-free circuit histogram is shown as 

solid line and the faulty circuit histogram is shown as a dotted line.  The faulty circuit 

histogram is a composite of all the faults formed by summing all the faulty histograms 

and dividing by the number of faults.  The vertical axis gives the number of units within a 

certain ORA metric range bin and the horizontal axis is the decimal ORA metric value, 

Figure 3.13 Fault simulator results for Analog Smag ORA metric for BiQuad 
filter at 5 MHz clock frequency (19.5 kHz effective waveform frequency), 
Cup waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range.  The 

dotted histogram is a composite of all faults rescaled and normalized relative 
to the solid histogram, which is the histogram for fault-free circuits. 

 



54 

S16out.  This convention will be used for all histograms contained hereafter.  The figure 

shows a cluster of faulty circuits around S16out=34000.  These faulty circuits correspond 

to the three resistive shorts given in Table 3.3 that produce the mid-rail DC voltage of 2.5 

volts.     The histogram also shows a cluster of faults that fall in the same range as the 

fault-free circuits.  Because faults in many components affect the output of the count-up 

waveform only slightly, many faulty circuit S16out value fall within the cluster of the fault- 
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free circuit histograms.  These faults, which affect the count-up output only slightly, are  

listed in Table 3.5.   

For the cases of Table 3.2 that were used to calculate theoretical results, Table 3.9 

shows percent error between theoretical and simulated results for S16out.  In Table 3.9, the 

Figure 3.14 Fault simulator results for analog S16out ORA metric for BiQuad 
filter at 5 MHz clock frequency (19.5 kHz effective frequency), Cup 

waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range.  The dotted 
histogram is a composite of all faults rescaled and normalized relative to the 

solid histogram, which is the histogram for fault-free circuits. 
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first column lists the fault, the second column gives the theoretical value of S16out and the 

third column gives the mean of the simulated value of S16out for 160 randomized circuits, 

for that particular fault (160 randomizations set by the faultsim command line).  In Table 

3.9, the percent error is calculated by using equation 3.3.  Table 3.9 shows that the 

simulated value of S16out metric is less than 5 percent form the theoretical values.  

 

 

 
 

The histogram for the S16del digital output metric is shown in Fig. 3.15.  In Fig. 3.15, the 

fault-free circuit histogram is shown as solid line and the composite faulty circuit 

histogram is shown as a dotted line.  The faulty circuit histogram is a composite of all the 

faults formed by summing all the faulty histograms and dividing by the number of faulty 

histograms.  The vertical axis gives the number of units within a certain ORA metric 

range bin and the horizontal axis is the ORA metric value, S16del.  The histogram of Fig. 

3.15 shows a cluster of faulty circuits around S16del=2500.  These faulty circuits 

correspond to the three resistive shorts given in Table 3.3 that produce the mid-rail DC 

voltage of 2.5 volts.      

 Table 3.10 shows the error relative to the theoretical values for the simulated 

S16del metric.  The percent error calculation in equation 3.3 is not appropriate for Table 

3.10 since the theoretical value is 0.  Therefore, the error is defined as the difference. The 

two histograms in Fig. 3.15 also show overlap of faults listed in Table 3.5, again 

indicating undetectable faults for this waveform.   

Fault Theoretical Value of S16out Fault Simulator mean value % error(eq 3.3) 
R2short 32512 34048 4.72 
R3short 32512 34048 4.72 
R1bshort 32512 34048 4.72 

Table 3.9 
S16out digital theoretical values against fault simulator results. 
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 The histogram for the S16mag digital output metric is shown in Fig. 3.16.  In Fig. 

3.16, the fault-free histogram is shown as solid line and the composite faulty circuit 

histogram is shown as a dotted line.  The faulty circuit histogram is a composite of all the 

faults formed by summing all the faulty histograms and dividing by the number of faulty 

histograms.  The vertical axis gives the number of units with a certain ORA metric range 

bin and the horizontal axis is the ORA metric value, S16mag.   

Fault Theoretical Value of S16del Fault Simulator mean value error 
R2short 0 2532 2532 
R3short 0 2532 2532 
R1bshort 0 2532 2532 

Table 3.10  
S16del digital theoretical values compared with fault simulator results 

Figure 3.15 Fault simulator results for analog S16del ORA metric for BiQuad 
filter at 5 MHz clock frequency (19.5 kHz effective frequency), Cup 

waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range.  The dotted 
histogram is a composite of all faults rescaled and normalized relative to the 

solid histogram, which is the histogram for fault-free circuits. 
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The histogram of Fig. 3.16 shows a cluster of faulty circuits around S16mag=16346.  

Unlike S16out and S16del, it is not possible to resolve a separate cluster corresponding only 

to the three resistive shorts given in Table 3.3 that produce the mid-rail DC voltage of 2.5 

V, since the values of faulty circuits are so close to the values of fault-free circuits. 

  Table 3.11 shows the error for the S16mag metric of the fault simulator is 

approximately 1 percent relative to the theoretical value.  The percent error calculation in 

Table 3.11 uses equation 3.3, with corresponding µ, and t.   

In Figs. 3.11 through 3.16, it can be seen that the fault-free circuit histograms and 

the faulty circuit histograms are often times very close to each other for each of the six 

analog and ORA metrics.  The histograms of Figs. 3.11 through 3.16 show that with the 

Figure 3.16 Fault simulator results for analog S16mag ORA metric for BiQuad 
filter at 5 MHz clock frequency (19.5 kHz effective frequency), Cup 

waveform, 5 V amplitude, 2.5 V offset, and 0-5V output range.  The dotted 
histogram is a composite of all faults rescaled and normalized relative to the 

solid histogram, which is the histogram for fault-free circuits. 
 



58 

count-up 19.5 kHz, 5 V peak-to-peak TPG waveform many faults are undetectable for 

this the ORA metric and TPG waveform.  The faults listed in Table 3.5 are undetectable 

with the TPG waveform.  However, they may be detectable with other waveforms and are 

therefore classified as potentially detectable. 

 
Table 3.11  

S16mag digital theoretical values against fault simulator results 
Fault Theoretical Value Fault Simulator mean value % error(Eq.3.4) 

R2short 16256 16346 0.5 
R3short 16256 16346 0.5 
R1bshort 16256 16346 0.5 

 
 
3.5 Comparison with Experimental Hardware 

In addition to confirming the results of the fault simulator against theoretical 

results in the previous section, this section compares fault simulator results to 

experimental hardware results.  The experimental data was produced by Jason Morton in 

the VLSI-FPGA Design and Test Lab under the direction of Dr. Charles Stroud of the 

University of North Carolina at Charlotte.  This hardware experimental data was 

generated using the BiQuad filter (detailed schematic included in Figs. 3.1 and 3.3).  The 

VLSI-FPGA Design and Test Lab used the BIST system of Fig. 2.1, designed and built at 

the VLSI-FPGA Design and Test Lab, was implemented per Fig. 3.18.  Faults are 

injected into the circuit of Fig. 3.3 by switches in series for opens, and by short-circuit 

jumpers in parallel for shorts, for the faults listed in Table 3.1.  The hardware does not 

produce the ORA metric for the S16del, so the comparison of the hardware to the fault 

simulator will be limited to the S16out and S16mag ORA metrics. 

 Table 3.12 is a summary of the results for the ORA metric S16out for the fault 

simulator and the hardware.  Table 3.12 shows the percent error, as defined in equation 
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3.4 below, between the results for the fault simulator and the experimental hardware 

results collected by Jason Morton from the VLSI-FPGA and Test Lab working under the 

direction of Dr. Charles Stroud.  

100×
−

=
simulator

simulatorhardwaree
µ

µµ   (3.4) 

 
Table 3.12  

Comparison of experimental hardware and simulations for S16out ORA metric showing 
difference between means and percent difference 

Faults
Fault µ 
 variance µ 
 variance µ difference %error of 

nofaults 42275 16.97 287.981 45420 783.96 614593 -3145 -6.92
R2short 35512 0 0 34048 0.3405 0.1159 1464 4.30
R3open 60830 2.07 4.2849 49726 856.7 733935 11104 22.33
R3short 29602 97 9409 34048 0.3405 0.1159 -4446 -13.06
R4open 43203 6.39 40.8321 45451 775 600625 -2248 -4.95
R4short 35000 4991.7 2.5E+07 33974 13 169 1026 3.02
R5open 43166 31.3 979.69 46654 193 37249 -3488 -7.48
R5short 32841.9 5881.9 3.5E+07 34048 0.3405 0.1159 -1206.1 -3.54
R6open 41385 10.5 110.25 45289 722 521284 -3904 -8.62
R6short 29818 5370 2.9E+07 49001 800 640000 -19183 -39.15
R7open 29600 5039 2.5E+07 49492 762 580644 -19892 -40.19
R7short 41375 11.3 127.69 45325 13.95 194.6 -3950 -8.71
C1open 32847 49 2401 34048 0.3405 0.1159 -1201 -3.53
C2open 34350 4610 2.1E+07 34048 0.3405 0.1159 302 0.89

S16out, 5 Megahertz clock, Count-up waveform

Software ResultsHardware Results Comparison

 

  

 Table 3.12 shows error ranging from less than 1 percent to 40 percent.  The 

results for the fault simulator tend to agree with the hardware experimental results for 

most faults, with only a few faults having considerable differences.   

 Table 3.13 contains the same data as Table 3.12 except for the S16mag ORA metric.   

The error in this Table can be seen to vary over a wider range than Table 3.12.  The range 

of error for the ORA metric S16mag ranges from a half percent to 75 percent.   
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Table 3.13 
Comparison of experimental hardware and simulations for S16mag ORA metric showing 

difference between means and percent difference 

Faults
µ 
 variance µ 
 variance µ difference %error of 

nofaults 13191 24.1 580.81 15913 213.84 45727.5 -2722 -17.11
R2short 16257 0 0 16346 0.1634 0.0267 -89 -0.54
R3open 25410.7 3705.83 13733176 18212 851 724201 7198.71 39.53
R3short 16998.2 132.93 17670.38 13346 0.1634 0.0267 3652.23 27.37
R4open 13485.5 5.88 34.5744 15893 241 58081 -2407.5 -15.15
R4short 28059 753.32 567491 16370 139.23 19385 11689.01 71.41
R5open 13233 20.7 428.49 16177 353.84 125203 -2943.99 -18.20
R5short 28919.4 12.097 146.3374 16346 0.1634 0.0267 12573.42 76.92
R6open 14203.3 7.79 60.6841 15871 213 45369 -1667.66 -10.51
R6short 13191.8 34.57 1195.085 17530.9 740 547600 -4339.15 -24.75
R7open 11580.6 1158 1340964 17987 828 685584 -6406.42 -35.62
R7short 14200.8 5.84 34.1056 15883 218 47524 -1682.19 -10.59
C1open 18465 96 9216 15908 221 48841 2557 16.07
C2open 18685 78 6084 16346 0.163 0.02657 2339 14.31

S16mag, 5 Megahertz clk, Count-up waveform

Fault Simulator ResultsHardware Results Comparison

 

 
3.6 Good Circuit Result Confirmation 
 
 In addition to confirming the results of the fault simulator against theoretical 

results for the specific fault conditions of Table 3.2, comparisons were made for a fault-

free circuit.  This section compares the fault-free circuit ORA data, comparing simulation 

results for the fault-free circuit to hardware results for the fault-free circuit.  

 A high-pass filter, such as the BiQuad filter should by definition have no DC 

offset in the output.  For the BiQuad circuit of Fig. 3.1, the high pass output should be 

symmetrical about the 2.5-VDC virtual ground of the output.  In this event, S16out and Sout 

ORA metrics would both be expected to have ORA values for good circuits that would be 

effectively the same as a 2.5-Vconstant DC output.   

 Transient effects that skew ORA metric results from their expected values are 

present in the hardware and simulation.  Fig. 3.17 shows an oscilloscope trace capturing 
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the first cycles of the cup TPG waveform at 5 MHz clock frequency with 5 V peak-to-

peak and 2.5 V offset in the hardware system.  The upper trace of Fig. 3.17 is the input to 

the hardware BiQuad circuit, after inversion of the DAC output by the inverting amplifier  

of Fig. 3.18.  The lower trace is the high pass output of the hardware BiQuad circuit.   

The oscilloscope trace of Fig. 3.17 was taken by the VLSI-FPGA Design and Test 

Lab by Steve Tucker and Jason Morton.  The behavior of the output in the hardware 

circuit shown in Fig. 3.17 matches roughly the SPICE simulation of Fig. 3.6.  The 

oscilloscope’s lower trace shows the high pass BiQuad output starting higher than 2.5 

VDC, going below 2.5 VDC, and then settling out to the expected 2.5 V virtual ground.  

Therefore, this transient is present in both the hardware and simulation, and should also 

influence the ORA results for both the fault simulator and the hardware experiments. 

 

 

 

Figure 3.17 Oscilloscope plot showing presence of transient effect on 5MHz 
Cup waveform with 5Vpp input on BiQuad filter (compare to SPICE plot 

Fig. 3.6).  Upper trace is 0 to 5 V Cup input TPG waveform (after inverting 
amp of Fig. 3.5), lower trace is high pass output showing transient behavior 

within first 4 or 5 cycles of saw-tooth waveform. 
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As is evident by inspection of the histograms of Figs. 3.11 and 3.14, the fault-free 

data is clustered around a value that is shifted up form the corresponding theoretical 

values of Sout=640 and S16out=32512 decimal.  From Fig. 3.17, the high pass output in the 

lower trace is initially shifted up by approximately 1 volt, corresponding to a shift in Sout 

of 256×1=256 and corresponding to a shift of S16out of 33 hex times FF hex equals 32CD 

hex or 13005 decimal.  And so, this would result in shifted histograms for a Sout and S16out 

centered at 640+256=856 and 32512+13005=45517.  And so, the fault-free Sout 

histogram of Fig. 3.11 is centered near 870, and the fault-free histogram for Fig. 3.14 is 

centered around 46,000.   

3.7 Conclusion 

 In conclusion, the fault simulator has been validated against both theoretical and 

experimental hardware results for a simple waveform.    For the simple faults which 

permit theoretical analysis, the simulator data was close to the theoretical data for Sout.  In 

addition, S16out ORA data of Table 3.12 shows good agreement between the simulator 

results and the experimental hardware results for many faults.  It is not clear, at present, 

the cause of the discrepancies between the simulator results and the experimental 

hardware results for S16mag in Table 3.13.  Nevertheless, there is good agreement for 

several faults between the simulator results and the experimental hardware results for 

S16mag in Table 3.3.  
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CHAPTER 4: POTENTIAL FUTURE DIRECTIONS 
 

  
  
 One potential area of future investigation includes reducing the margin of error 

between the fault simulator and the experimental hardware results of Tables 3.12 and 

3.13.  In addition, more waveforms from Appendix B could be simulated and checked.  

 Other potential areas of future work include methods of speeding up the selection 

of TPG waveforms and improving the methods by which TPG waveforms are selected.  

Section 4.1 suggests possible ways to evaluate TPG waveforms for mixed signal BIST 

Microsystems.  Section 4.2 addresses a second area of future investigation, issues of fault 

coverage for the BiQuad.  Then section 4.3 considers receiver operating characteristics as 

a tool in selecting metric thresholds.  Finally section 4.4 considers Bhattacharyya 

methods for selecting the most promising TPG waveforms to speed up the simulator.  

4.1 Speeding up Fault Simulation  

 The task of choosing the best TPG waveform and ORA metric with the maximum 

fault coverage requires the simulation of many different TPG waveforms on many 

versions of a circuit.  To illustrate the number of combinations, consider a very simple 

circuit with 11 components to demonstrate the time requirements of such a simulation.  A 

circuit with 11 components will have 22 different faults, assuming two hard faults per 

component.  Also assume each circuit with and without faults is randomized 250 times to 

simulate normal component variations.  In addition, let there be 14 TPG waveforms at 

three frequencies and three amplitudes.  This produces 11×(22+1)×250×14×3×3=725,000 
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circuits to be simulated with only modest coverage of frequency and amplitude.  The 

particular case of the OpAmp1 circuit of Fig. 4.1 takes 10 seconds to simulate and would 

then give a simulation time of 7,250,000 seconds, or 84 days.   This large amount of time 

even for a  

 

 

 

very simple circuit of eleven components suggests a need for speeding up the fault 

simulator. 

 There are several possible approaches to speeding up the fault simulation ranging 

from changes in software architecture to sensitivity analysis.  The possible changes in 

software architecture include altering the flow of the simulation module to work in 

multiple threads, a number of threads to be specified by the user based on the available 

Figure 4.1 Operational amplifier circuit (OpAmp1). 
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computing resources.  Changes in the software to simulate 4 circuits simultaneously 

throughout the simulation cut the time by 75 percent, or linearly to one fourth.  The 

reduction in simulation time t, from N threads, is N/t times faster.  

 The fault simulator was converted into a multi-threaded application by using the 

fork function in C++ to run SPICE simulations spawned by the fault simulator in parallel.  

This function will allow a program to diverge into multiple threads and allowing 

processes that don’t depend on each other and don’t fully consume computing resources, 

to run in parallel.  The following is a code sample to show how a process can be forked.  

The fork() function call returns a 0 for a child process, positive integer for the parent or 

calling process and a negative integer in case of failure.  This function allows for the 

program to split but, still have access to the same variables and functions of the parent 

program.  The following code shows how simple controls can be used to spawn off child 

processes and increase the speed of an application.   

 /*some statements before fork()*/ 
int pid = fork(); 
if( pid < 0 ) 
{ 
 perror("..."); exit(EXIT_FAILURE); 
} 
else if( pid ) //parent process 
{ 
   /*some code here*/ 
} 
else // child process 
{ 
  /*child code here*/ 
} 
 
 In a second approach to speeding up simulations, more promising test vectors and 

ORA metrics can be simulated, pruning less promising TPG vectors and metrics from the 

search tree.  Toward this end, a measure of how good a particular TPG waveform and 
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ORA metric is at isolating faults is proposed.  This method will utilize Gaussian 

characteristics of the output data to prune ineffective TPG waveforms and ORA methods 

from the search tree. 

4.2 Fault Coverage 

 A second area for future consideration is estimates of fault coverage for the 

BiQuad circuit.  In earlier versions of the fault simulator, some fault coverage issues were 

investigated for the circuit of Fig. 4.1.  The operational amplifier of Fig. 4.1 OpAmp1 

was simulated in the fault simulator.  (The net-list used in testing the operational 

amplifier can be found in Appendix C)  The circuit was simulated using seven of the 

eleven TPG the test patterns found in Appendix B.  All six of the aforementioned ORA 

metrics, Sout, Sdel, Smag, S16out, S16del, and S16mag were evaluated.  The OpAmp1 circuit was 

simulated with the following list of arguments as described in section 3.4: 

 faultsim benchmark.cir 4 160 17 18 16 0 2.5 0.2 120 0 5 

A simulation of test patterns 1, 2, 3, 4, 5, 6, and 7 from Appendix B were used in the 

simulation at clock frequencies 10kHz, 100kHz, and 1MHz.  All waveforms in the 

operational amplifier tests used two hundred milli-volt input amplitude.  The amplitude 

was set to two hundred millivolts to be well in the range of the bias conditions such that 

the amplifier output would not clip too severely.   It was observed that test patterns 8, 9 

10, 11, and 12 had convergence problems with the circuit during simulation.  Even after 

increasing simulation time limits, the convergence problems persisted and failed to yield 

useful ORA data.  For purposes of the remainder of this section, only the 10 kHz cup 

TPG waveform and the Sdel ORA metric will be considered.    
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 Figure 4.2 is the analog histogram of Sdel for the count-up (Cup) analog ramp 

function waveform at 10 kHz clock frequency and two hundred milli-volt amplitude.  The 

10 kHz clock frequency gives an effective frequency of 39 Hz, as derived by dividing the 

clock frequency by the number of clock cycles it takes to complete one cycle, 256.  The 

histograms of Fig. 4.2 show the histogram created by the fault-free circuit as a solid line 

and the composite for all faults as a dotted line.   
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 Figure 4.3 shows a histogram containing only good circuits, the range at which a 

fault-free circuit would fall when tested with the cup waveform at 10 kHz, two hundred 

milli-volt amplitude, and Sdel ORA metric.  Figure 4.4 shows the histogram produced 

when an open is introduced into M1, creating a suck-off fault along with the histogram of 

fault-free circuit (solid).   

Figure 4.2 Histogram of fault-free circuits and faulty circuits for OpAmp1 
with 200 mV Cup waveform at 10 kHz clock frequency. 
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 The stuck-off fault condition for the transistor M1 of Fig. 4.1 is modeled as an 

open as discussed in section 2.3.4, preventing the transistor from turning on and operating 

normally.     

 The M1 open creates the histogram in Fig 4.4 that is clearly shifted off to the 

right, distinguishing the faulty circuit from the fault-free circuit.  The figure illustrates 

how the count-up waveform at 10 kHz can be used to find a faulty circuit with an open in 

M1 using the Sdel ORA metric.  This fault is said to be detectable and identifiable by this 

waveform as illustrated in the separation between the two histograms of Figure 4.4.  The 

histogram of Fig. 4.5 outlines how the TPG waveform cup at 10 kHz and two hundred 

millivolts does not distinguish an open in capacitor cl and an open in resistor rl.  In this 

figure, the solid histogram of the fault-free circuits overlap the composite histogram of 

the faulty circuits (shown by the barely visible dotted curve).  Therefore, the 

Figure 4.3 Histogram of fault-free circuits for OpAmp1 with 200 mV Cup 
waveform at 10 kHz clock frequency. 
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TPG waveform Cup did not result in well separated histograms for faulty and fault-free 

circuits with the Sdel ORA metric.  These faults are considered to be undetectable and 

therefore bring the fault coverage of the test vector down.   It can be seen from the 

schematic of the operational amplifier that these two components, rl and cl don’t effect 

circuit operation at a low clock frequency of 10 kHz when they have open circuit faults. 

4.3 Receiver Operating Characteristics  

 To address the issue of fault coverage and selection of ORA metric decision 

thresholds for deciding the presence of faults, we draw upon earlier work on receiver 

operating characteristics (ROC).  ROC is considered as a method to analyze the fault 

coverage illustrated in the previous section.  Consider the simplified probability density 

function(pdf) of Fig. 4.1, in which two Gaussian pdf’s occur with different means and 

variances where the Gaussian pdf is:  

Figure 4.4 Histogram of fault-free circuits and circuits with M1 open for  
OpAmp1 with 200 mV Cup waveform at 10 kHz clock frequency. 
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 The pdf on the left of Fig. 4.6 represents a Gaussian distribution of some ORA 

metric for fault-free circuits and the distribution on the right represents the distribution 

for some particular fault.  Let boundary A, be the decision threshold between fault-free 

and faulty circuits.  All of the units to the left of the boundary are classified fault-free and  

all of the circuits to the right of boundary A are classified bad.   ROC is used to set this 

threshold and analyze what happens when the threshold is varied.   

 The false alarm rate (equivalent to the sum of false positives and false negatives 

discussed in chapter 1) can be modeled by the receiver operating characteristics, or the 

receiver operating curve, as shown in Figure 4.7.   

Figure 4.5 Histogram of Fault Free Circuits and Circuits with Rl open and Cl open 
for  OpAmp1 with 200 mVolt Cup waveform at 10 KHz Clock Frequency 
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 Figure 4.7 depicts how moving the boundary A to the left will decrease the 

number of false positives but will increase the number of false negatives at a much 

Fault-free circuit 
distribution 

Faulty circuit 
distribution 

A 

Keep Throw away 

Figure 4.6 Histogram illustrating false positives and false negatives. 
 

Probability 
 

X 

false negatives false positives  

fault-free circuits faulty circuits 

Figure 4.7: Receiver operating curve. 
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greater rate given Gaussian data.  The ROC curve shows the trade off between the 

selectivity and sensitivity.  The ROC curve can be used to select the best operating point 

as a trade off between selectivity and sensitivity.  The threshold would be chosen so that 

the threshold, A, gives the best trade off between the total number of false positives and 

false negatives.  The threshold can be calculated by equation 4.2 where the average 

expected cost of placing threshold A at point x, which takes the cost of a false positive, �, 

the cost of missing a positive, �, with proportion of cases, �, and the location of the 

boundary x[24]. 

( ) )1(1cos xxt −+−= ρβαρ    (4.2) 
 

 Equation 4.2 can be used to determine the cost of choosing the threshold of 

boundary A, of Fig. 4.6. The equation shows the complementary relationship of �, the 

cost proportion, to the position of the boundary x.  The relationship of Fig. 4.2 shows that 

moving the boundary too close to the fault-free circuit pdf will cause an increase in costs 

proportional to the cost proportion constant �.  False positives and false negative do not 

incur the same cost in the relationship of equation 4.2, allowing further flexibility. 

4.4 Bhattacharyya Distance and Fast TPG Pattern Searching 

 A simple way for quantifying the false alarm rate is the Bhattacharyya Error or B-

distance.  This metric is not only useful in the one dimensional case such as Fig. 4.6, but 

also multi-dimensional cases.  Also, it can be used to help speed up fault simulation by 

providing a metric for choosing more promising TPG waveforms in the branches of a tree 

structured search for the best waveform in fault simulation. 

 The solution to finding a TPG waveform efficiently presents many challenges. 

One solution would be to first run a full batch of fault-free parametrically randomized 
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circuits for every waveform.  From such a simulation the statistical parameters needed for 

Gaussian statistical characterization of fault-free circuit ORA metrics can be derived.  

The parameters needed include variance, correlation, standard deviation � (sigma), and � 

(statistical mean) for all ORA metrics.  This data would then provide a statistical model 

for each of the six ORA metrics, Sout, Sdel, Smag, S16out, S16del, and S16mag.   

 The next step is to take a small statistical sample of circuits with each fault, with 

each test vector, and ORA metric for comparison with the fault-free circuit data that was 

collected in the first step.  The statistical sample of runs would then be analyzed to 

determine which test vectors were most promising for exposing faults.  There are 

numerous potential approaches once the statistical data for the fault-free circuits and the 

faulty circuits is estimated for all the TPG waveforms and ORA metrics.  The next 

question is how to use this statistical data to determine which test vectors will be 

committed to complete simulation.  

 Some possible techniques for using the statistical sample to choose promising 

waveforms included using a six-sigma distance of each test vector to eliminate the test 

vectors with mean that lie within the six-sigma distance of the fault-free circuits.  The 

problem with this strategy was that some of the TPG waveforms provided excellent fault 

coverage with certain ORA metrics while other ORA metrics from the same TPG 

waveform did not.  Thus requiring retaining a test vector even if two out of three digital 

ORA metrics performed poorly. 

 In a more powerful approach, the efficacy of TPG waveforms and ORA metrics 

can be ranked by calculating the Bhattacharyya distance between two multi-variate 

Gaussian distributions and thus estimate error bound, or equivalently, the fault 
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coverage[1].  The requirements for the Bhattacharyya distance are two sets of 

multivariate data that have a Gaussian pdf[1].  To the extent that the data is Gaussian, the 

Bhattacharya distance and error bound techniques can be used to generate a TPG 

waveform and ORA ranking.    

 Bhattacharyya distance is a measure of the distance between two sets of 

multivariate Gaussian pdf’s used to calculate the Chernoff error bound when quantifying 

the hypothetical statistical differentiation between classes.  The Bhattacharyya distance is 

found from the mean and standard deviation of the two sets of multivariate Gaussian 

data.  The multivariate mean and multi-variant standard deviation from two sets of 

Gaussian pdf's are used for the calculation of the B-distance and to estimate the error.   

In the more simple case of one dimensional data, the scalar means and standard 

deviations are first needed for each set of data [2].  The scalar mean is found from the 

limit, 

�
=

=
=

nk

k
kx

n 0

1µ    (4.3) 

  

 The scalar standard deviation and variance for the values can also be derived from 

data. There are six sets of ORA metric values for each TPG pattern in the ORA files that 

can used as the multivariate data for the Bhattacharyya distance algorithm outlined above 

[2].  The next step in the process of ranking the TPG patterns by the best possible error of 

any of three ORA values lies in calculating the Bhattacharyya distance to estimate the 

error for each fault, for each ORA metric and TPG waveform.  The Bhattacharyya 
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distance [3]: 
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Where µ1 and µ2 are the vector means of 2 classes, ∑1 and ∑2 are covariance matrices [3].    

For the purposes of illustration, a scalar form will be considered. The B-distance formula 

then becomes in scalar form, 
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Where �1 is the mean for the fault-free circuits and �2 is the mean for the data, and �1 and 

�2 are the standard deviations.  The error bound is then found through the following 

relationship [2].   
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 In this scalar example, of equation 4.4  produces three error values per TPG 

pattern, one for each ORA value from which the data was derived. This is then used to 

determine the effective error rates of each individual feature of the Gaussian data, or the 

fault coverage of different TPG waveforms and ORA metrics.   

 The TPG waveforms are then sorted according to the lowest error bound.  

The end result is a list ranking the most promising TPG waveforms and ORA metrics for 

maximum fault coverage.  Future research may consider using the vector form of the 

Bhattacharyya measure instead of the scalar form of this discussion.   
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APPENDIX A: CLASS LIBRARIES AND THEIR FUNCTIONS 
 

 
Module       Function 
    
Ora  
 

Processes SPICE output files and generates the ORA metric data 

Gsrc 
 

Processes G models in SPICE 

Vsrc 
 

Processes V components 

Circuit              
 

Loads, parses, and writes circuit files 

DotEnds        
 

Concludes processing with instance of .end statement 

Other          
 

Processes statements not included present Library i.e. diode, .probe, 
.ac, .dc etc 

Inductor            
 

Processes inductors 

Xsubckt 
 

Processes sub-circuit statements in SPICE 

CircuitStats            
 

Processes parametric variations of R, L, C and mos. 

DotSubckt 
 

Processes .subckt statements in SPICE 

Resistor       
 

Processes resistor statements in SPICE 

Isrc  
 

Processes current source statements in SPICE 

Comment  
 

Processes commented lines in SPICE any line with * 

Esrc      
 

Processes SPICE voltage controlled voltage source statements 

Statistics     
 

Processes Statistical parameters for CircuitStat’s parametric 
variations 

Component 
 

Loads circuit and processes all known components 

Mos  
 

Processes MOS components and their faults 

Faultlist 
 

Generates faultlist and for faulty files 

Tpg            
 

Generates test patterns for fault simulator 

Faultsim 
 

Main program executable 

Anarun Processes  ORA output and generates PDF histograms 
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Capacitor 
 

Processes capacitors and their faults 

Data 
 

For processes various data arrays in file writing 
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APPENDIX B: LIST OF TPG WAVEFORMS 
 
 

 
TPG Waveform        Abbreviation 
 

1. Count Up        cup  
 

2. Count down        cdwn 
 

3. Count Up Down       cud 
 

4. Count Up w/bit reversal      cuR 
 

5. Count down w/bit reversal      cdR 
 

6. Count Up Down w/bit reversal     cudR 
 

7. Linear Frequency Shift Register     lsfr 
 

8. Frequency Sweep       fswp 
 

9. Frequency Sweep w/bit reversal     fswpR 
 

10. Frequency Sweep w/ Constant Amplitude    fswpC 
 

11. Frequency Sweep w/ Constant Amplitude and Bit Reversal  fswpRC 
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The following are pictorial diagrams illustrating the shape or appearance of TPG 
waveforms. 
 
Pattern        Pictorial 

cup  
 
 
 
cdwn 
 

cud  
 
 
 
cuR         noise-like 
 
 
cdR         noise-like 
 
 
cudR         noise-like 
 
 
lsfr         noise-like 
 
 

fswp        
       
 
fswpR       random amplitude, random period 
 
 
fswpC      
 
 
fswpRC      constant amplitude, random period 
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APPENDIX C: SPICE NET LIST FOR OPERATIONAL AMPLIFIER 
 

 
*Operational amplifier Hspice Netlist 
*tpw opamp: out vin+ vin- +5volt -5volt 
.subckt OpAmp 9 11 12 13 14 
R1 1 14 110E3 
M1 1 1 13 13 PMOS L=4U W=150U 
M2 3 1 13 13 PMOS L=4U W=35U 
M3 9 1 13 13 PMOS L=4U W=100U 
M4 4 12 3 3 PMOS L=4U W=60U 
M5 5 11 3 3 PMOS L=4U W=60U 
 
cl 5 16 1.27E-12 
 
rl 16 9 8750 
M6 4 4 14 14 NMOS L=4U W=27.5U 
M7 5 4 14 14 NMOS L=4U W=27.5U 
M8 9 5 14 14 NMOS L=4U W=100U 
 
.MODEL NMOS NMOS (                                 LEVEL  = 3                   
+ TOX    = 3.1E-8          NSUB   = 1.763642E15     GAMMA  = 0.721254            
+ PHI    = 0.7             VTO    = 0.5944737       DELTA  = 0.913057            
+ UO     = 652.3781644     ETA    = 9.998788E-4     THETA  = 0.0712612           
+ KP     = 7.319728E-5     VMAX   = 2.51124E5       KAPPA  = 0.5                 
+ RSH    = 0.0981893       NFS    = 4.760633E11     TPG    = 1                   
+ XJ     = 3E-7            LD     = 0               WD     = 7.519702E-
7         
+ CGDO   = 1.67E-10        CGSO   = 1.67E-10        CGBO   = 1E-10               
+ CJ     = 2.879473E-4     PB     = 0.8976295       MJ     = 0.5                 
+ CJSW   = 1.18445E-10     MJSW   = 0.05            )                            
                                                   
.MODEL PMOS PMOS (                                 LEVEL  = 3                   
+ TOX    = 3.1E-8          NSUB   = 1E17            GAMMA  = 0.4794113           
+ PHI    = 0.7             VTO    = -0.8594243      DELTA  = 0.4719726           
+ UO     = 100             ETA    = 0.9984189       THETA  = 0.1358457           
+ KP     = 2.489648E-5     VMAX   = 1.052858E5      KAPPA  = 0                   
+ RSH    = 35.4503246      NFS    = 5.538975E11     TPG    = -1                  
+ XJ     = 2E-7            LD     = 9.78062E-15     WD     = 1E-6                
+ CGDO   = 1.98E-10        CGSO   = 1.98E-10        CGBO   = 1E-10               
+ CJ     = 2.872176E-4     PB     = 0.7469896       MJ     = 0.4224801           
+ CJSW   = 1.402728E-10    MJSW   = 0.0702615       )   
 
.ends OpAmp 
 
Xop1 16 17 18 2 10 OpAmp 
VDD 2 0 5 
VSS 10 0 0 
 
.end  
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APPENDIX D: SPICE NET LIST FOR REDUCED ORDER BIQUAD FILTER 
 

 
* Schematics Version 9.2.2 
* Fri Sep 13 14:55:32 2002 
 
* From [PSPICE NETLIST] section of h:\apps\pspice\PSpice\PSpice.ini: 
* HPO:Node 2, BPO:Node 9, LPO: Node 13 
* Input nodes: 5 & 2 
 
R3         2 1  10000   
R2         3 2  10000   
R7         8 9  7.5000   
R4         9 10  10000   
R6         12 8  3010   
R1a        3 4  20000   
R1b        12 3  20000   
R5         3 13  10000   
R3a        7 2  100   
R3b        16 9  100   
R3c        15 13  100 
 
E2         0 7 8 , 3 1000000 
E6         0 15 12 , 10 1000000 
E5         0 16 12 , 1 1000000 
 
D2         2 6 Dbreak  
D3         0 2 Dbreak  
D8         0 9 Dbreak  
D9         9 11 Dbreak  
D10        0 13 Dbreak  
D11        13 14 Dbreak  
 
C1         1 9  0.015U   
C2         10 13  0.015U 
C5         5 4  1   
C11        0 12  10U   
C7         0 12  0.1U   
 
 
 
 
V15        6 0 5V 
V18        11 0 5V 
V19        14 0 5V 
 
.MODEL Dbreak D(IS=1E-15) 
 
*Vin        5 0 DC 0V  
V13        12 0 2.5V 
 
*.PROBE 
.END 
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APPENDIX E: FAULTSIM MANUAL 
 

 
 The following pages are manual pages from the fault simulator software, faultsim, 

class libraries, and anarun.  This appendix contains detailed information for each class 

library, the main executable faultsim, and the post processing executable anarun.  The 

detailed information includes program flow, usage information, class functions, and 

variable descriptions along with various data members. 
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. ----------------------------------------------------------------------- 

.  

.     faultsim.cpp 

.  

.    Rev 2.0 

. 

. ----------------------------------------------------------------------- 

. faultsim.cpp is a c++ main() executable program 

.  

.  it uses classes from ../classes directory 

.  for help, run faultsim without arguments and it will  

.   print a help screen 

.   

.  

. NOTE: for latest usage information, run faultsim at the 

.  command line without any arguments!! 

.  

.  

. Usage: 

.      

.  faultsim ckt.cir numproc numrand inpos inneg outpos outneg vbias vamp maxcpu 
vomin vomax repnum 
. 
.           - ckt.cir is the circuit spice file 
.           - numproc is number of processes that are forked()  
.              to run in parallel on a multi-cpu machine  
.           - numrand is number of randomizations per fault  
.           - inpos,inneg are pos and neg differential input nodes 
.           - outpos,outneg are pos and neg differential output nodes 
.           - vbias is test pattern dc bias, where  
.   inpos=vbias-(vampl/2) to inpos=vbias+(vampl/2) 
.   and inneg=vbias  
.      if vbias=0, then a true floating input is used 
.           - vamp test pattern amplitude in volts  
.           - maxcpu is max number cpu seconds allowed per spice run  
.           - vomin to vomax is differential output voltage range  
. - repnum num or repetitions to run waveform 
.      
.      Example:        
.           faultsim benchmark.cir 2 5 17 18 16 0 2.5 0.2 30 0 5 
 
. Functional summary of faultsim 
.  
.  1. controls parallel execution on a multi-cpu machine 
.  
.  2. first creates a directory "rundataxx" for the run  
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.  

.  3. then, creates directory "rundataxx/circ" and stores 

.   randomized template spice circuit files there,  

.   with one ".cir" file per randomized faulty circuit 

.    

.    the original spice file is entered as an argument  

.   in the faultsim command line 

.   

.   the template file has a comment line "tpwtpgheretpw" 

.   used as a marker for the location of the test pattern 

.   to be inserted 

.  

.   numrand command line argument determines number of  

.  randomizations per fault (i.e, 100 random circuits with 

.  R1 open-circuited, 100 with R2,  ... etc.) 

.  

.  4. then, faultsim spawns (using fork()) several executables 

.   "runtpg" that make use of multiple cpu's 

. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. initial simulation set-up: 

.  

.  - create data directory rundatxxxx where xxx is date 

.  - create subdirectory,  

.  creates directory "rundataxx/circ" and stores 

.   randomized template spice circuit files there,  

.   with one ".cir" file per randomized faulty circuit 

.    

.    the original spice file is entered as an argument  

.   in the faultsim command line 

.   

.   the template file has a comment line "tpwtpgheretpw" 

.   used as a marker for the location of the test pattern 

.   to be inserted.  

.  - set up statistics for simulation 

.   process stats refer to lot-to-lot batch-batch process variations 

.    and hence tend to be large standard deviations 

.   chip stats refer to variations within a single chip 

. 

.   default statistics: 

.      
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     Process stats           Chip Stats 
.         ---------------------    --------------------- 
.          pdf    mean   std-dev    pdf    mean   std-dev 
.         -----   ----   ------    -----   ----   ----- 
.   Resistors:   gauss     1     0.1      gauss     1     0.04 
.   Capacitors:  gauss     1     0.11     gauss     1     0.03 
.   Inductors:   gauss     1     0.12     gauss     1     0.02 
. 
.  
.  
.  - create directory for rundata 
.  name it rundataxxx, where xxx is a date stamp 
.  
.  - generate faults and randomized files 
.  store in directory rundataxxx/spicefiles 
. 
.   default faults: 
.    Faults            
.        ---------------------     
.         open     short    parametric    
.        -----     ----     ------     
.  Resistors:   1e9 ohm     1        0.1  
.  Capacitors:  2e-18 F     2        0.2      
.  Inductors:   3e9 H       3E-18    0.3    
.  MOSFET:      1e8 Ohm     3        0.12 (drain-source open/shorts) 
. 
.  
.  
.  - create Tpg files 
.  test all waveforms at 10KHz, 100KHz, 1 MHz  
.  
.  possible waveforms 
.     cup, cdwn, cud, cuR, cdR, para, paraR, pulse, 
.     cudR, const, lfsr, fswp, fswpR, fswpC, fswpRC\n"); 
.  
.  
.   includes lines for tapping into circuit for input nodes 
.    and output nodes (disabled if any argument is NULL) 
.   also, vbias="" disables DC bias creating pure floating  
.    differential input 
. 
.       - - inpos,inneg are pos and neg differential input nodes 
.   for differential input voltage source 
.       - outpos,outneg are pos and neg differential output nodes 
.       - vbias test pattern dc bias, 
.   where inpos=vbias-(vin/2) through vbias+(vin/2)  
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.   and inneg = vbias 

. 

.  (output file name is contained in filename class member) 

.   Usage:  

. 

.  possible waveforms 

.     cup, cdwn, cud, cuR, cdR, para, paraR, pulse, 

.     cudR, const, lfsr, fswp, fswpR, fswpC, fswpRC); 

.  

.  

.  - generate one scratch directory "procx" per parallel processes  

.  - generate one ora directory for all ora results  

.  - run all good circuits first  

.     with parallel processes using fork 

.   

. Method:  

.  while loop on tpg files (test patterns) 

.    while loop on good spicefiles (circuits without test atterns) 

.      erase all process directories (procx) 

.      for loop over number of processes (parallel threads) 

.   copy/merge tpg/spice file to procx directories 

.   fork parallel processes 

.   run eldo on all procx directories 

.   create ora files (output response analaysis) 

.      end loop number processes 

.      copy ora to master ora files in directory ora 

.    end loop good spicefiles 

.  end loop tpgfiles 

.  

.  - run all faulty circuits next  

.     with parallel processes using fork 
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. ----------------------------------------------------------------------- 

.  

.     Capacitor.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Capacitor.cc is a c++ clas for capacitor devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Capacitor.h 

.  

. class Capacitor 

. { 

.  

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="C";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Capacitor::Capacitor() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="Cdefault" 

.    linenumber=0 

.    type="C" 

.    name="Cdefault" 

.    value=0; 
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.    model="Cdefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Cdefault" 

.    rawline="Cdefault" 

.    trackerr=0 

.    randomerr=0 
  
. Function: Capacitor::Capacitor(char * xrawline, int xlinenumber) 
.     constructor from raw spicefile line 
  
. Function: Capacitor::Capacitor(char * xname, double xvalue, int xnodeplus,  
.  int xnodeneg, int xlinenumber) 
.     constructor from data  
. Function: Capacitor::~Capacitor() 
.    default destructor  
. Function: Capacitor& Capacitor::operator=(const Capacitor & r) 
.   overloaded equal 
. FUNCTIONS ------------------------------------------------------- 
. Function: Capacitor::loadline(char * xrawline,int xlinenumber) 
.    loads capacitor with data translated from a spice-formatted line  
.  Assigns following defaults: 
.    rawline="Cdefault" 
.    linenumber=0 
.    type="C" 
.    name="Cdefault" 
.    value=0; 
.    model="Cdefault" 
.    numnodes=2 
.    nodelist=0 0 
.    remainderline="Cdefault" 
.    rawline="Cdefault" 
.    trackerr=0 
.    randomerr=0 
. Function: void Capacitor::writefile(ofstream * xfname )  
.   writes a capacitor to the file handle xfname 
.     
.   file is assumed to already be opened 
.   file is not closed 
. Function: void Capacitor::writefile(ofstream * xfname , CircuitStats & cs )  
.   writes a randomized capacitor to the file handle xfname 
.   file is assumed to already be opened 
.   file is not closed 
. Function: void Capacitor::print()  
.   prints capacitor stderr 
.   Usage: a.print(); 
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. Function: void Capacitor::setvalue(double xvalue)  

.   sets capacitor value 

. Function: void Capacitor::scalevalue(double xscale)  

.   sets capacitor value to value times xscale 

. Function: char * Capacitor::getname()  

.   gets capacitor name 

.  END   
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. ----------------------------------------------------------------------- 

.  

.     Circuit.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Circuit.cc is a c++ clas for a Circuit as would correspond to the  

.  top-level circuit in a spice netlist file.   

.  The basic structure is defined in Circuit.h 

.  

. class Circuit 

. { 

.  

. private: 

.  

.  char * spicefilename;  //name of Original spicefile 

.   

.  char * spicefilename;  //Original spicefilename loaded in memory 

.   

.  Component * pC;  //pointer to objects corresponding to  

.     //   various components of circuit 

.  int numcomponents; //number of components 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Circuit::Circuit() 

.    default constructor  

.  Assigns following defaults: 

. char * spicefilename="Circuit Not Loaded";    

. int numcomponents=0;    

. Component * pC=NULL; 

. Function: Circuit::~Circuit() 

.    default destructor  

. FUNCTIONS ------------------------------------------------------- 

. Function: Circuit::loadfile(char * xfilename) 

.    loads Circuit with data translated from a spice-file 

. Function: void Circuit::writefile(char * xfname)  

.   writes a component to the file named xfname 

.   file is opened and closed 

. Function: void Circuit::writefile(char * xfname, CircuitStats & cs )  

.   writes a randomized circuit to the file named xfname 

.   file is opened and closed 
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. Function: void Circuit::print()  

.   prints Circuit stderr 

.   Usage: a.print(); 

. Function: int Circuit::getnumcomponents()  

.   returns numcomponents 

. Function: char * Circuit::getspicefilename()  

.   returns spicefilename 

. Function: Component Circuit::getcomponent(int n)  

.   returns component n 
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. ----------------------------------------------------------------------- 

.  

.     CircuitStats.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. CircuitStats.cc is a c++ class for statistical functions  

.    

.  The basic structure is defined in CircuitStats.h 

. class CircuitStats 

. { 

. private: 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: CircuitStats::CircuitStats() 

.    default constructor  

.  Assigns following defaults: 

.    comment="Default uniform" 

.    pdf1="uniform" 

.    pdf2="disabled" 

.    mean1=0; 

.    sigma1=1; 

.    mean2=0; 

.    sigma2=0; 

. Function: CircuitStats::~CircuitStats() 

.    default destructor  

. Function: CircuitStats & CircuitStats::operator=(const CircuitStats & stat) 

.    overloaded equal 

. Function: void CircuitStats::SetCircuitStats(char * xcomment,  

.  char * xrprocesspdf, double rprocessmean, double rprocesssig, 

.  char * xrchippdf, double rchipmean, double rchipsig, 

.  char * xcprocesspdf, double cprocessmean, double cprocesssig, 

.  char * xcchippdf, double cchipmean, double cchipsig, 

.  char * xlprocesspdf, double lprocessmean, double lprocesssig, 

.  char * xlchippdf, double lchipmean, double lchipsig)    

.     load statistics 

. FUNCTIONS ------------------------------------------------------- 

. Function: void CircuitStats::genchip( )  

.   returns a random number 

. Function: double CircuitStats::scaleresistor( )  

.   returns a random number 
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. Function: double CircuitStats::scalecapacitor( )  

.   returns a random number 

. Function: double CircuitStats::scaleinductor( )  

.   returns a random number 

. Function: void CircuitStats::writefile(ofstream * xfname )  

.   writes a CircuitStats object to the file handle xfname 

.   it is written as a spicefile comment 

. Function: void CircuitStats::print()  

.   prints resistor stderr 

.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Comment.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Comment.cc is a c++ clas for Comment lines as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Comment.h 

. class Comment 

. { 

. private: 

. char * rawline; //raw spicefile line as read in from file 

. int linenumber;  //linenumber in original spicefile 

. char * type;   //device type, i="Comment" 

. char * name;  //="Comment" 

. double value;  //=0 

. char * model;  //="Comment" 

. int numnodes;  //=0 

. int nodelist[2];  //= 0 0 

.    //   

. char * remainderline;  //remainder of raw spice-file line contents 

.    //  as contained in rawline, 

.    //  after stripping off name, model,  

.    //  nodelist and value  

. double trackerr; //=0 

. double randomerr;  //=0 

.    //  

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Comment::Comment() 

.    default constructor  

.  Assigns following defaults: 

. Function: Comment::Comment(char * xtext,int xlinenumber)  

.     constructor from data 
   
. Function: Comment::~Comment() 
.    default destructor  
. Function: Comment& operator=(const Comment& com) 
.   overloaded equal 
. FUNCTIONS ------------------------------------------------------- 
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. Function: Comment::loadline(char * xrawline,int xlinenumber) 

.    loads Comment with data translated from a spice-formatted line  

. Function: void Comment::writefile(ofstream * xfname )  

.   writes a Comment to the file handle xfname 
  file is assumed to already be opened 
.   file is not closed 
. Function: void Comment::print()  
.   prints Comment stderr 
.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Component.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Component.cc is a c++ clas for Component devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Component.h 

.  

. class Component 

. { 

. private: 

. char * type;   //device type, i.e., R, L, C, V, Comment, unknown 

. int linenumber;  //linenumber in original spicefile 

. Resistor * pR;  // pointer to object actually containing component 

. Inductor * pL;  //   only one pointer should be non-NULL 

. Capacitor * pC; 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Component::Component() 

.    default constructor  

.  Assigns following defaults: 

. char * type="Component Undefined";    

. int linenumber=0;   

. Resistor * pR=NULL;   

. Inductor * pL=NULL;   

. Capacitor * pC=NULL; 

. Function: Component::Component(Component &) 

.    copy constructor  

. Function: Component::~Component() 

.    default destructor  

. Function: Component& Component::operator=(Component & comp) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Component::loadline(char * xrawline,int xlinenumber) 

.    loads Component with data translated from a spice-formatted line  

. Function: void Component::writefile(ofstream * Xsubcktfname)  

.   writes a component to the file handle Xsubcktfname 
    
.   file is assumed to already be opened 
.   file is not closed 
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. Function: void Component::writefile(ofstream * Xsubcktfname, CircuitStats & cs)  

.   writes a randomized component to the file handle Xsubcktfname 

.     

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Component::print()  

.   prints Component stderr 

.   Usage: a.print(); 

. Function: int Component::isresistor()  

.   return 1 if true, 0 if not 

. Function: int Component::iscapacitor()  

.   return 1 if true, 0 if not 

. Function: int Component::isinductor()  

.   return 1 if true, 0 if not 

. Function: int Component::ismosfet()  

.   return 1 if true, 0 if not 

. Function: char Component::gettype()  

.   return type 

. Function: char * Component::getname()  

.   return name 

. Function: void Component::setvalue(double xvalue)  

.   set component value to xvalue 

. Function: void Component::faultdrainopen(double xvalue)   

.   set drain to have series resistor of value xvalue 

.    typically used to open-circuit a fet 

. Function: void Component::faultdrainsourceshort(double xvalue)   

.   set drain to have drain-source shunt resistor of value xvalue 

.    typically used to short-circuit a fet 

. Function: void Component::scalevalue(double xscale)  

.   set component value to value times xscale 
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. ----------------------------------------------------------------------- 

.  

.     Data.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Data.cc is a c++ clas for Data arrays 

.  The basic structure is defined in Data.h 

.  

. class Data 

. { 

.  

. private: 

.     //numarray x arraysize data array 
 char* comment;  // 
. char** names;  //names of each data array 
. int numarray;  //number of arrays 
.  
. double* rarray;  //array real part 
. double* iarray;  //array imaginary part 
. int arraysize;  //length of each array associated with 
.    //each name 
.  A wide class of operators is provided, and generally memory is  
. allocated and deallocated automatically. 
. FLAGS ----------------------------------------------------------- 
. 
. Check the header file for any useful debug flags 
. CONSTRUCTORS ---------------------------------------------------- 
. Function: Data::Data() 
.    default constructor  
.  Assigns following defaults: 
. Function: Data::Data(const Data& dat) 
.    copy constructor  
. Function: Data::Data(char * xcomment, int xnumarray, int arraysize)  
.     constructor of particular size 
. Function: Data::~Data() 
.    default destructor  
. Function: Data& operator=(const Data& com) 
.   overloaded equal 
. FUNCTIONS ------------------------------------------------------- 
. Function:  store(int xarraynum,  
.  int xelnum, 
.  double xr, double xi);  //store xr and xi into xrdata xidata 
.     //of array number xarraynum 
.     //at array element number xelnum 
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. Function: double readr(int xarraynum, int xelnum);   

.  read exeulnum'th element rarray value from     

.  from the xarraynum'th array 

. Function: double readi(int xarraynum, int xelnum);   
     
.  read exeulnum'th element iarray value from     
.  from the xarraynum'th array 
. Function: double readname(int xarraynum);   
.  read name of     
.   the xarraynum'th array 
. Function: double storename(int xarraynum,char* xname);   
.  store name of     
.   the xarraynum'th array 
. Function: Data getarray(int xnum)   
.  get     
.   the xnum'th array 
. Function: void Data::rplothistoeps(char * fname,    
.  int xarraynum,     
.  double xmin, double xmax,  
.  int numbins);  
.   plot histogram of rarray xarraynum 
.   for range xmin to xmax 
.   with numbins bins 
. Function: void Data::ploteps(int xarraynum, 
.   char * xfname, char * title, 
.   char * xaxlabel, char * yaxlabel ) 
.  array number xnum contains the data 
.   rarray contains xaxis coordinate 
.    iarray contains y coordnate  
.   writes an eps plotfile to the file  xfname 
.    title is placed at top of plot 
.   xaxlabel and yaxlabel are axis labels of plot 
. Function: void Data::writefile(char * xfname )  
.   writes a Data to the file  xfname 
. Function: void Data::print()  
.   prints Data stderr 
.   Usage: a.print(); 
. Function: double Data::rmean(int xarraynum) 
.   compute mean of rarray number xarraynum 
. Function: double Data::imean(int xarraynum) 
.   compute mean of iarray number xarraynum 
. Function: double Data::rmeansq(int xarraynum) 
.   compute mean square (second moment) 
.  of rarray number xarraynum 
. Function: double Data::imeansq(int xarraynum) 
.   compute mean square (second moment) 
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.  of iarray number xarraynum 

. Function: double Data::rmin(int xarraynum) 

.   compute minimum of rarray number xarraynum 

. Function: double Data::rmax(int xarraynum) 

.   compute maximum of rarray number xarraynum 

. Function: double Data::imin(int xarraynum) 

.   compute maximum of iarray number xarraynum 

. Function: double Data::imax(int xarraynum) 

.   compute maximum of iarray number xarraynum 

. NON-MEMBER FUNCTIONS 
************************************************* 
. Function  float plot_limit_max(float) 
.  used to calculate maximum plotranges in plot_eps() 
. Function  float plot_limit_min(float) 
.  used to calculate minimum plotranges in plot_eps() 
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. ----------------------------------------------------------------------- 

.  

.     DotEnds.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. DotEnds.cc is a c++ class for .ends lines as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in DotEnds.h 

. class DotEnds 

. { 

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="R";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: DotEnds::DotEnds() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="Rdefault" 

.    linenumber=0 

.    type="R" 

.    name="Rdefault" 

.    value=0; 

.    model="Rdefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Rdefault" 
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.    rawline="Rdefault" 

.    trackerr=0 

.    randomerr=0 

. Function: DotEnds::~DotEnds() 

.    default destructor  

. Function: DotEnds& DotEnds::operator=(const DotEnds & xde) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: DotEnds::loadline(char * xrawline,int xlinenumber) 

.    loads resistor with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="Rdefault" 

.    linenumber=0 

.    type="R" 

.    name="Rdefault" 

.    value=0; 

.    model="Rdefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Rdefault" 

.    rawline="Rdefault" 

.    trackerr=0 

.    randomerr=0 

. Function: void DotEnds::writefile(ofstream * xfname )  

.   writes a resistor to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void DotEnds::print()  

.   prints resistor stderr 

.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     DotSubckt.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. DotSubckt.cc is a c++ class for .ends lines as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in DotSubckt.h 

. class DotSubckt 

. { 

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="R";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: DotSubckt::DotSubckt() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="Rdefault" 

.    linenumber=0 

.    type="R" 

.    name="Rdefault" 

.    value=0; 

.    model="Rdefault" 

.    numnodes=2 

.    nodelist=0 0 
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.    remainderline="Rdefault" 

.    rawline="Rdefault" 

.    trackerr=0 

.    randomerr=0 

. Function: Resistor::~Resistor() 

.    default destructor  

. Function: DotSubckt& DotSubckt::operator=(const DotSubckt& sub) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Resistor::loadline(char * xrawline,int xlinenumber) 

.    loads resistor with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="Rdefault" 

.    linenumber=0 
/.    type="R" 
.    name="Rdefault" 
.    numnodes=2 
.    nodelist=0 0 
.    remainderline="Rdefault" 
.    rawline="Rdefault" 
.    trackerr=0 
.    randomerr=0 
. Function: void Resistor::writefile(ofstream * xfname )  
.   writes a resistor to the file handle xfname 
.   file is assumed to already be opened 
.   file is not closed 
. Function: void Resistor::print()  
.   prints resistor stderr 
.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Esrc.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Esrc.cc is a c++ class for controlled-source devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Esrc.h 

. class Esrc 

. { 

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="Esrc";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 
  
.  A wide class of operators is provided, and generally memory is  
. allocated and deallocated automatically. 
. FLAGS ----------------------------------------------------------- 
. Check the header file for any useful debug flags 
. CONSTRUCTORS ---------------------------------------------------- 
. Function: Esrc::Esrc() 
.    default constructor  
.  Assigns following defaults: 
.    rawline="EsrcDefault" 
.    linenumber=0 
.    type="V" 
.    name="EsrcDefault" 
.    value=0; 
.    model="EsrcDefault" 
.    numnodes=2 
.    nodelist=0 0 
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.    remainderline="EsrcDefault" 

.    rawline="EsrcDefault" 

.    trackerr=0 

.    randomerr=0 

. Function: Esrc::Esrc(char * xrawline, int xlinenumber) 

.     constructor from raw spicefile line 

. Function: Esrc::Esrc(char * xname, double xvalue, int xnodeplus,  

.  int xnodeneg, int xlinenumber) 

.     constructor from data 

. Function: Esrc::~Esrc() 

.    default destructor  

. Function: Esrc& Esrc::operator=(const Esrc & xe) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Esrc::loadline(char * xrawline,int xlinenumber) 

.    loads vsource with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="EsrcDefault" 

.    linenumber=0 

.    type="V" 

.    name="EsrcDefault" 

.    value=0; 

.    model="EsrcDefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="EsrcDefault" 

.    rawline="EsrcDefault" 

.    trackerr=0 

.    randomerr=0 

. Function: void Esrc::writefile(ofstream * xfname )  

.   writes a vsource to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Esrc::print()  

.   prints vsource stderr 

.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Faultlist.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Faultlist.cc is a c++ class for a Faultlist as would correspond to the  

.  top-level Faultlist in a spice netlist file.   

.  The basic structure is defined in Faultlist.h 

.  

. class Faultlist 

. { 

. private: 

.  

.  char * spicefilename;  //name of Original spicefile 

.   

.  char * spicefilename;  //Original spicefilename loaded in memory 

.   

.  Component * pC;  //pointer to objects corresponding to  

.     //   various components of Faultlist 

.  int numcomponents; //number of components 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Faultlist::Faultlist() 

.    default constructor  

.  Assigns following defaults: 

. char * spicefilename="Faultlist Not Loaded";    

. int numcomponents=0;    

. Component * pC=NULL; 

. Function: Faultlist::~Faultlist() 

.    default destructor  

. FUNCTIONS ------------------------------------------------------- 

. Function: Faultlist::genfaultlist(Circuit & xcirc,   

. double xropen,double xrshort,double xrpara, 

. double xcopen,double xcshort,double xcpara, 

. double xlopen,double xlshort,double xlpara) 
 generate faultlist (no parametric faults) 
.   generates only opens and shorts 
.  see genparafaultlist to generate a parametric faultlist 
.   
.  xcirc is circuit without faults 
. 
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.  xropen=resistance of open circuit resistors 

.  xrshort=resistance of shorts 

.  xrpara=parametric fault , i.e 0.5 = =/- 50% 

. Function: Faultlist::genparafaultlist(Circuit & xcirc,   

. double xropen,double xrshort,double xrpara, 

. double xcopen,double xcshort,double xcpara, 

. double xlopen,double xlshort,double xlpara) 

. generate faultlist (no short/open faults) 

.   generates only parametric faults 

.  see genfaultlist to generate short/opens faultlist 

.  xcirc is circuit without faults 

.  xropen=resistance of open circuit resistors 

.  xrshort=resistance of shorts 

.  xrpara=parametric fault , i.e 0.5 = =/- 50% 

. Function: void Faultlist::writefile(char * xfname)  

.   writes a component to the file named xfname 

.   file is opened and closed 

. Function: void Faultlist::writefaults(char* dirname, char * xfname, Circuit & ckt )  

.   writes faulty circuits to the files named xfnamefault 

.    in directory dirname 

.   file is opened and closed 

. Function: void Faultlist::writerandfaults(char * dirname, char * xfname,  

.    Circuit & ckt,CircuitStats & cs, int xnr )  

.   writes randomized faulty circuits to the files named xfnamefault 

.    with xnr randomizations per fault 

.   in directory dirname 

.   file is opened and closed 

. Function: void Faultlist::print()  

.   prints Faultlist stderr 

.   Usage: a.print(); 

. char * Faultlist::getfname(int n)  

.  return faultname of fault n 

. Component Faultlist::getfcomp(int n) 

.  return faulty component for fault n 

. int Faultlist::getnumcomp(int n)  

.  return faulty component number corresponding to fault n 
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. ----------------------------------------------------------------------- 

.  

.     Gsrc.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Gsrc.cc is a c++ class for controlled-source devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Gsrc.h 

. class Gsrc 

. { 

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="Gsrc";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Gsrc::Gsrc() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="GsrcDefault" 

.    linenumber=0 

.    type="V" 

.    name="GsrcDefault" 

.    value=0; 

.    model="GsrcDefault" 

.    numnodes=2 

.    nodelist=0 0 
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.    remainderline="GsrcDefault" 

.    rawline="GsrcDefault" 

.    trackerr=0 

.    randomerr=0 

. Function: Gsrc::Gsrc(char * xrawline, int xlinenumber) 

.     constructor from raw spicefile line 

. Function: Gsrc::Gsrc(char * xname, double xvalue, int xnodeplus,  

.  int xnodeneg, int xlinenumber) 

.     constructor from data 

. Function: Gsrc::~Gsrc() 

.    default destructor  

. Function: Gsrc& Gsrc::operator=(const Gsrc & xe) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Gsrc::loadline(char * xrawline,int xlinenumber) 

.    loads vsource with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="GsrcDefault" 

.    linenumber=0 

.    type="V" 

.    name="GsrcDefault" 

.    value=0; 

.    model="GsrcDefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="GsrcDefault" 

.    rawline="GsrcDefault" 

.    trackerr=0 

.    randomerr=0 

. Function: void Gsrc::writefile(ofstream * xfname )  

.   writes a vsource to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Gsrc::print()  

.   prints vsource stderr 

.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Inductor.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Inductor.cc is a c++ clas for inductor devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Inductor.h 

. class Inductor 

. { 

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="L";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Inductor::Inductor() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="Ldefault" 

.    linenumber=0 

.    type="L" 

.    name="Ldefault" 

.    value=0; 

.    model="Ldefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Ldefault" 
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.    rawline="Ldefault" 

.    trackerr=0 

.    randomerr=0 

. Function: Inductor::Inductor(char * xrawline, int xlinenumber) 

.     constructor from raw spicefile line 

. Function: Inductor::Inductor(char * xname, double xvalue, int xnodeplus,  

.  int xnodeneg, int xlinenumber) 

.     constructor from data 

. Function: Inductor::~Inductor() 

.    default destructor  

. Function: Inductor& Inductor::operator=(const Inductor & r) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Inductor::loadline(char * xrawline,int xlinenumber) 

.    loads inductor with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="Ldefault" 

.    linenumber=0 

.    type="L" 

.    name="Ldefault" 

.    value=0; 

.    model="Ldefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Ldefault" 

.    rawline="Ldefault" 

.    trackerr=0 

.    randomerr=0 

. Function: void Inductor::writefile(ofstream * xfname )  

.   writes a inductor to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Inductor::writefile(ofstream * xfname , CircuitStats & cs )  

.   writes a randomized inductor to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Inductor::print()  

.   prints inductor stderr 

.   Usage: a.print(); 

. Function: void Inductor::setvalue(double xvalue)  

.   sets inductor value 

. Function: void Inductor::scalevalue(double xscale)  

.   sets inductor value to value times xscale 

. Function: char * Inductor::getname()  

.   gets inductor name 
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. ----------------------------------------------------------------------- 

.  

.     Isrc.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Isrc.cc is a c++ clas for source devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Isrc.h 

.  

. class Isrc 

. { 

.  

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="I";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Isrc::Isrc() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="IsrcDefault" 

.    linenumber=0 

.    type="I" 

.    name="IsrcDefault" 

.    value=0; 

.    model="IsrcDefault" 
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.    numnodes=2 

.    nodelist=0 0 

.    remainderline="IsrcDefault" 

.    rawline="IsrcDefault" 

.    trackerr=0 

.    randomerr=0 

. Function: Isrc::Isrc(char * xrawline, int xlinenumber) 

.     constructor from raw spicefile line 

. Function: Isrc::Isrc(char * xname, double xvalue, int xnodeplus,  

.  int xnodeneg, int xlinenumber) 

.     constructor from data 

. Function: Isrc::~Isrc() 

.    default destructor  

. Function: Isrc& Isrc::operator=(const Isrc & vdd) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Isrc::loadline(char * xrawline,int xlinenumber) 

.    loads vdd with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="IsrcDefault" 

.    linenumber=0 
/.    type="I" 
.    name="IsrcDefault" 
.    value=0; 
.    model="IsrcDefault" 
.    numnodes=2 
.    nodelist=0 0 
.    remainderline="IsrcDefault" 
.    rawline="IsrcDefault" 
.    trackerr=0 
.    randomerr=0 
. Function: void Isrc::writefile(ofstream * xfname )  
.   writes a vdd to the file handle xfname 
.   file is assumed to already be opened 
.   file is not closed 
. Function: void Isrc::print()  
.   prints vdd stderr 
.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Mos.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Mos.cc is a c++ clas for mos devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Mos.h 

. class Mos 

. { 

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="M";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 

. char * fault;  //fault used to print extra resistor 

. int faultflag;  //=0 if no fault 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. 

. 

.  

. CONSTRUCTORS ---------------------------------------------------- 

.  

.  

. Function: Mos::Mos() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="Mdefault" 
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.    linenumber=0 

.    type="M" 

.    name="Mdefault" 

.    value=0; 

.    model="Mdefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Mdefault" 

.    rawline="Mdefault" 

.    trackerr=0 

.    randomerr=0 

.   rfault="Mdefault" 

.   int faultflag=0 = no fault 

.    

.  

. Function: Mos::Mos(char * xrawline, int xlinenumber) 

.     constructor from raw spicefile line 

. Function: Mos::Mos(char * xname, double xvalue, int xnodeplus,  

.  int xnodeneg, int xlinenumber) 

.     constructor from data 

. Function: Mos::~Mos() 

.    default destructor  

. Function: Mos& Mos::operator=(const Mos & mos) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Mos::loadline(char * xrawline,int xlinenumber) 

.    loads mos with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="Mdefault" 

.    linenumber=0 
/.    type="M" 
.    name="Mdefault" 
.    value=0; 
.    model="Mdefault" 
.    numnodes=2 
.    nodelist=0 0 
.    remainderline="Mdefault" 
.    rawline="Mdefault" 
.    trackerr=0 
.    randomerr=0 
. Function: void Mos::writefile(ofstream * xfname )  
.   writes a mos to the file handle xfname 
.   file is assumed to already be opened 
.   file is not closed 
. Function: void Mos::print()  
.   prints mos stderr 
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.   Usage: a.print(); 

. Function: void Mos::faultdrainopen(double xvalue)   

.   set drain to have series resistor of value xvalue 

.    typically used to open-circuit a fet 

. Function: void Mos:: faultdrainsourceshort(double xvalue)   

.   set drain -source to have shunt resistor of value xvalue 

.    typically used to short-circuit a fet 

. Function: char * Mos::getname()  

.   gets Mos name 
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. ----------------------------------------------------------------------- 

.  

.     Ora.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Ora.cc is a c++ class for generating input signals 

.  The basic structure is defined in Ora.h 

. class Ora 

. { 

. private: 

. char * spicefile; //name of spicefile 

.  char * tpgfile;  //name of tpg file 

.  char * chifile;  //name of chifile (spice output file) 

.  double vomax;  //range of differential vout 

.  double vomin;  //  assumed equal to range 

.     //  of a/d converter at output 

.  double vbias;  //dc bias at input 

.     //if bias=0, assume floating inputs 

.     //else inneg=constant vbias 

.     //   with inpos=vbias+/- ampl/2 

.  double ampl;  //amplitude of differential input  

.     //ranges 0-ampl if no bias 

.  double vinscale; //scale factor applied to differential 

.  double voutscale; //  in/out voltages 

.     //typically, voscale=1 and viscale is 

.     //  adjusted so vin has same volt swing 

.     //  as vout 

.  double voutsum;  //ora sum of Vout 

.  double vdiffsum; //ora sum of Vout - Vin 

.  double vmagsum;  //ora sum of |Vout - Vin| 

.  double clkthresh; //clock threshold (half-voltage) 

.     //   assumed 2.5 volts(see Tpg.cpp) 

.  int errflag;  //error flag 

.  char * errmsg;  //error message 

.   

.  int nclk;  //column number of clock data in chi file 

.   int nvinplus,nvinminus; //column numbers of vin data in chi file 

.  int nvoutplus,nvoutminus; //column number of vout data in chi file 

.     waveforms:  

.     cup, cdwn, cud, cuR, cdR, para, paraR, pulse, 

.     cudR, const, lfsr, fswp, fswpR, fswpC, fswpRC\n"); 

.    clock freq  in Hz, KHz (K), MHz (M), GHz (G)   

.    amplitude in Volts (integer) 

.    output format: sp (SPICE) ex (EXCEL) cs (CSIM)\n"); 
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.    repnum is number of repetitions of waveform or SR bits for freq_sweep 

.    poly is an integer 0-127 giving inner coefficients of poly 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Ora::Ora() 

.    default constructor  

.  Assigns following defaults: 

. Function: Ora::~Ora() 

.    default destructor  

. Function: int Ora::genora(char * spicefile,   

.  char * tpgfile, char * chifile  

.   double xvbias, double xampl, 

.  double xvomin, double xvomax  )  

.  - generate ora from spice (.cir), tpg (.tpg), 

.    and spice output (.chi) files 

.  - the chi file is a spice output file 

.  - xvbias and xampl are dc input bias and 

.   amplitude of input voltage 

.   if bias=0, assume floating inputs, 

.    else neg innode=constant vbias 

.     with pos=vbias+/- ampl/2 

.   amplitude of differential input  

.    ranges 0-ampl if no bias 

.   Return: 1=bad ora, 0=good 

.   Usage: a.createora(); 

. Function: unsigned int Ora::analog2digital(double xanaval) 

.   converts analog value to digital value: digital value = analog/0.019608 

.   Usage: ; 

. This function could be use in the future  

. Function: unsigned int Ora::decimal2binary_V2(unsigned int xdecval) 

.   converts decimal to binary 

.   Usage: ; 

. Function: void Ora::writeorafile(char * xorafile)  

.   writes ora data/results to ora file 

.   Usage: ; 

. Function: void Ora::writeoraerrfile(char * xoraerrfile)  

.   writes ora error message to ora error file 

.   Usage: ; 

. Function: void Ora::print()  

.   prints Ora stderr 

.   Usage: a.print(); 

.  

. Function: int Ora::findcolumns( )  

.  - find column locations in spice output data file 

.  -   to locate 

.     clock, vopos, voneg, vineg, vipos 

.  - set corresponding class members 
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.   if bias=0, assume floating inputs, 

.   Return: 1=fail, 0=succeed 

.   Usage: a.createora(); 
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. ----------------------------------------------------------------------- 

.  

.     Other.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Other.cc is a c++ clas for Other lines as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Other.h 

. class Other 

. { 

. private: 

. char * rawline; //raw spicefile line as read in from file 

. int linenumber;  //linenumber in original spicefile 

. char * type;   //device type, i="Other" 

. char * name;  //="Other" 

. double value;  //=0 

. char * model;  //="Other" 

. int numnodes;  //=0 

. int nodelist[2];  //= 0 0 

.    //   

. char * remainderline;  //remainder of raw spice-file line contents 

.    //  as contained in rawline, 

.    //  after stripping off name, model,  

.    //  nodelist and value  

. double trackerr; //=0 

. double randomerr;  //=0 

.    //  

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Other::Other() 

.    default constructor  

.  Assigns following defaults: 

. Function: Other::Other(char * xtext,int xlinenumber)  

.   

.     constructor from data 

. Function: Other::~Other() 

.    default destructor  

. Function: Other& operator=(const Other& com) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 
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. Function: Other::loadline(char * xrawline,int xlinenumber) 

.    loads Other with data translated from a spice-formatted line  

. Function: void Other::writefile(ofstream * xfname )  

.   writes a Other to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Other::print()  

.   prints Other stderr 

.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Resistor.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Resistor.cc is a c++ clas for resistor devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Resistor.h 

. class Resistor 

. { 

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="R";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Resistor::Resistor() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="Rdefault" 

.    linenumber=0 

.    type="R" 

.    name="Rdefault" 

.    value=0; 

.    model="Rdefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Rdefault" 
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.    rawline="Rdefault" 

.    trackerr=0 

.    randomerr=0 

. Function: Resistor::Resistor(char * xrawline, int xlinenumber) 

.     constructor from raw spicefile line 

. Function: Resistor::Resistor(char * xname, double xvalue, int xnodeplus,  

.  int xnodeneg, int xlinenumber) 

.     constructor from data 

. Function: Resistor::~Resistor() 

.    default destructor  

. Function: Resistor& Resistor::operator=(const Resistor & r) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Resistor::loadline(char * xrawline,int xlinenumber) 

.    loads resistor with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="Rdefault" 

.    linenumber=0 

.    type="R" 

.    name="Rdefault" 

.    value=0; 

.    model="Rdefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Rdefault" 

.    rawline="Rdefault" 

.    trackerr=0 

.    randomerr=0 

.  

. Function: void Resistor::writefile(ofstream * xfname )  

.   writes a resistor to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Resistor::writefile(ofstream * xfname , CircuitStats & cs )  

.   writes a randomized resistor to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Resistor::print()  

.   prints resistor stderr 

.   Usage: a.print(); 

. Function: void Resistor::setvalue(double xvalue)  

.   sets resistor value 

. Function: void Resistor::scalevalue(double xscale)  

.   sets resistor value to value times xscale 

. Function: char * Resistor::getname()  

.   gets resistor name 
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. ----------------------------------------------------------------------- 

.  

.     Statistics.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Statistics.cc is a c++ class for statistical functions  

.    

.  The basic structure is defined in Statistics.h 

. class Statistics 

. { 

. private: 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Statistics::Statistics() 

.    default constructor  

.  Assigns following defaults: 

.    comment="Default uniform" 

.    pdf1="uniform" 

.    pdf2="disabled" 

.    mean1=0; 

.    sigma1=1; 

.    mean2=0; 

.    sigma2=0; 

. Function: Statistics::Statistics(char * xcomment, char * xpdf1,   

.  double xmean1, double xsigma1) 

.     constructor from data 

. Function: Statistics::~Statistics() 

.    default destructor  

. Function: Statistics & Statistics::operator=(const Statistics & stat) 

.    overloaded equal  

. FUNCTIONS ------------------------------------------------------- 

. Function: double Statistics::genrand( )  

.   returns a random number 

. Function: Statistics::setstats(char * xcomment, char * xpdf1,   

.  double xmean1, double xsigma1) 

.     set statistics 

. Function: Statistics::setmean( double xmean1)   

.  set mean=xmean1,  

. Function: Statistics::setstatstol(char * xcomment, char * xpdf1,   

.  double xmean1, double tolerance) 

.     set statistics 
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.  set mean=xmean1,  

.  sigma=stddev=tolerance/2.5 for gauss pdf 

.   i.e., +/- 2.5 std deviations=tolerance 

.   i.e., a 5% tolerance, tolerance=0.05, stdev=0.02 

.  for uniform pdf, sigma=tolerance*2/3.4641 

. Function: void Statistics::writefile(ofstream * xfname )  

.   writes a statistics object to the file handle xfname 

.   it is written as a spicefile comment 

. Function: void Statistics::print()  

.   prints resistor stderr 

.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Tpg.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Tpg.cc is a c++ class for generating input signals 

.  The basic structure is defined in Tpg.h 

. class Tpg 

. { 

.  

. private: 

.      

.  

.  char * clkfreq;  //clock frequency 

.  char * amplitude; //waveform amplitude 

.  char * waveform;  //waveform (square/ramp/parabola, etc) 

.  char * format;  //file format of output, sp =spice 

.  char * filename;  //name of output file 

.  char * poly;  //lfsr polynomial 

.  char * repnum;  //number of repetitions of waveform 

.  //the following two are automatically created from above members  

.  int argc;  //these items argc and argv mimmick 

.  char ** argv;  //the behavior of cestroud's anatpg.c 

.   

.  int printdig(int xval, int xdig);//used internally only 

.     waveforms:  

.     cup, cdwn, cud, cuR, cdR, para, paraR, pulse, 

.     cudR, const, lfsr, fswp, fswpR, fswpC, fswpRC\n"); 

.    clock freq  in Hz, KHz (K), MHz (M), GHz (G)   

.    amplitude in Volts (integer) 

.    output format: sp (SPICE) ex (EXCEL) cs (CSIM)\n"); 

.    repnum is number of repetitions of waveform or SR bits for freq_sweep 

.    poly is an integer 0-127 giving inner coefficients of poly 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Tpg::Tpg() 

.    default constructor  

.  Assigns following defaults: 

. Function: void Tpg::createtpg(char * filename ,char *  waveform , char * clkfreq ,  

.   char * amplitude , char * format ,  

.   char * repnum , char * poly  ) 

.   gcreates input signals 

.   Usage: a.createtpg(); 

. Function: Tpg::~Tpg() 

.    default destructor  
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. Function: void Tpg::mergefiles(char * xtpgfile,  

.   char * xcirfile, char * xmergedfile) 

.    merges tpg  file and circuit file into output file 

.   .end statement is placed at end of final output file 

.   Usage:  

. Function: void Tpg::Tpg::writefile() 

.    writes tpg to file  

.  (output file name is contained in filename class member) 

.   Usage:  

. Function: void Tpg::writefulltpg( 

.   char * xinposnode, char * xinnegnode,    

.   char * xoutposnode, char * xoutnegnode,  

.   char * xvbias  ) 

.   writes tpg to file contained in "filename" member 

.   includes lines for tapping into circuit for input nodes 

.    and output nodes (disabled if any argument is NULL) 

.   also, vbias="" disables DC bias of input and you 

.   get a true floating differential input 

.       - xinposnode, xinnegnode: pos and neg input nodes 

.   for differential input voltage source 

.       - xoutposnode, xoutnegnode: pos and neg output nodes 

.       - vxbias: dc bias value where posnode input ranges from 

.   xvbias+(vin/2) to xvbias-(vin/2) and 

.   innegnode is set to vbias 

.  (output file name is contained in filename class member) 

.   Usage:  

. Function: int TPG::printdig(int val, int dig) 

.   writes the line components for csim file format 

.   Usage: a.writetpg(); 

. Function: void Tpg::getterminput()  

.   prompts user for terminal input 

.   Usage: 

. Function: void Tpg::print()  

.   prints Tpg stderr 

.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Vsrc.cpp 

.  

.    Rev 1.0 

. 

. ----------------------------------------------------------------------- 

. Vsrc.cc is a c++ clas for source devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Vsrc.h 

. class Vsrc 

. { 

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="V";  //device type, i.e., R, L, C, V, M 

.  char * name;  //instance name, i.e., R1, R2, etc 

.  double value;  //resistance value 

.  char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for R, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  R=(1+trackerr+randomerr)*value 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. FLAGS ----------------------------------------------------------- 

. Check the header file for any useful debug flags 

. CONSTRUCTORS ---------------------------------------------------- 

. Function: Vsrc::Vsrc() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="VsrcDefault" 

.    linenumber=0 

.    type="V" 

.    name="VsrcDefault" 

.    value=0; 

.    model="VsrcDefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="VsrcDefault" 
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.    rawline="VsrcDefault" 

.    trackerr=0 

.    randomerr=0 

. Function: Vsrc::Vsrc(char * xrawline, int xlinenumber) 

.     constructor from raw spicefile line 

. Function: Vsrc::Vsrc(char * xname, double xvalue, int xnodeplus,  

.  int xnodeneg, int xlinenumber) 

.     constructor from data 

. Function: Vsrc::~Vsrc() 

.    default destructor  

. Function: Vsrc& Vsrc::operator=(const Vsrc & vdd) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Vsrc::loadline(char * xrawline,int xlinenumber) 

.    loads vdd with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="VsrcDefault" 

.    linenumber=0 
/.    type="V" 
.    name="VsrcDefault" 
.    value=0; 
.    model="VsrcDefault" 
.    numnodes=2 
.    nodelist=0 0 
.    remainderline="VsrcDefault" 
.    rawline="VsrcDefault" 
.    trackerr=0 
.    randomerr=0 
. Function: void Vsrc::writefile(ofstream * xfname )  
.   writes a vdd to the file handle xfname 
.     
.   file is assumed to already be opened 
.   file is not closed 
. Function: void Vsrc::print()  
.   prints vdd stderr 
.   Usage: a.print(); 
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. ----------------------------------------------------------------------- 

.  

.     Xsubckt.cpp 

.  

.    Xsubcktev 1.0 

. 

. ----------------------------------------------------------------------- 

. Xsubckt.cc is a c++ clas for Xsubckt devices as would be found in  

.  a spice netlist file.   

.  The basic structure is defined in Xsubckt.h 

. class Xsubckt 

. { 

. private: 

.  char * rawline; //raw spicefile line as read in from file 

. int linenumber=0; //linenumber in original spicefile 

.  char * type="Xsubckt";  //device type, i.e., Xsubckt, L, C, V, M 

.  char * name;  //instance name, i.e., Xsubckt1, Xsubckt2, etc 

.  //double value;  //resistance value 

.  //char * model=" "; //optional device model name 

.  int numnodes=2;  //number of nodes/pins the device has 

.  int nodelist[2];  //ordered list of node numbers for device 

.     //  for Xsubckt, nodelist is +node, -node 

.  char * remainderline;  //remainder of raw spice-file line contents 

.     //  as contained in rawline, 

.     //  after stripping off name, model,  

.     //  nodelist and value (first line only) 

.  double trackerr=0; //tracking portion of error factor 

.  double randomerr=0;  //random portion of error 

.     //  Xsubckt=(1+trackerr+randomerr)*value 

.  A wide class of operators is provided, and generally memory is  

. allocated and deallocated automatically. 

. 

. 

. FLAGS ----------------------------------------------------------- 

. 

. Check the header file for any useful debug flags 

. CONSTXsubcktUCTOXsubcktS ---------------------------------------------------- 

. Function: Xsubckt::Xsubckt() 

.    default constructor  

.  Assigns following defaults: 

.    rawline="Xsubcktdefault" 

.    linenumber=0 

.    type="Xsubckt" 

.    name="Xsubcktdefault" 

.    //value=0; 

.    //model="Xsubcktdefault" 
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.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Xsubcktdefault" 

.    rawline="Xsubcktdefault" 

.    trackerr=0 

.    randomerr=0 

. Function: Xsubckt::Xsubckt(char * xrawline, int xlinenumber) 

.     constructor from raw spicefile line 

. Function: Xsubckt::Xsubckt(char * xname,  int xnodeplus,  

.  int xnodeneg, int xlinenumber) 

.     constructor from data 

. Function: Xsubckt::~Xsubckt() 

.    default destructor  

. Function: Xsubckt& Xsubckt::operator=(const Xsubckt & r) 

.   overloaded equal 

. FUNCTIONS ------------------------------------------------------- 

. Function: Xsubckt::loadline(char * xrawline,int xlinenumber) 

.    loads Xsubckt with data translated from a spice-formatted line  

.  Assigns following defaults: 

.    rawline="Xsubcktdefault" 

.    linenumber=0 

.    type="Xsubckt" 

.    name="Xsubcktdefault" 

.    value=0; 

.    model="Xsubcktdefault" 

.    numnodes=2 

.    nodelist=0 0 

.    remainderline="Xsubcktdefault" 

.    rawline="Xsubcktdefault" 

.    trackerr=0 

.    randomerr=0 

. Function: void Xsubckt::writefile(ofstream * xfname )  

.   writes a Xsubckt to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Xsubckt::writefile(ofstream * xfname , CircuitStats & cs )  

.   writes a randomized Xsubckt to the file handle xfname 

.   file is assumed to already be opened 

.   file is not closed 

. Function: void Xsubckt::print()  

.   prints Xsubckt stderr 

.   Usage: a.print(); 
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APPENDIX F: S16OUT ORA METRIC FAULT METRIC DATA 
 
 
 The histograms of Figs. F.1 to F.12 are histograms showing individual faults and 

fault free circuits, for the ORA metric S16out, for simulations of the circuit of Fig. 3.3.  The 

histograms of F.1 to F.12 comprise the composite histogram of Fig. 3.14.  The histograms 

of Figs. F.13 to F.24 are histograms showing individual faults and fault free circuits, for 

the ORA metric S16mag, for simulations of the circuit of Fig. 3.3.  The histograms of F.13 

to F.24 comprise the composite histogram of Fig. 3.16.   
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Figure F.1: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock 
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset, 
and 0-5V output range.  The histograms shown are R2short(dotted) and fault-free(solid) 

circuits. 
 

Figure F.2: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock 
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset, 
and 0-5V output range.  The histograms shown are R3open(dotted) and fault-free(solid) 

circuits. 
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Figure F.3: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock 
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset, 
and 0-5V output range.  The histograms shown are R3short(dotted) and fault-free(solid) 

circuits. 
 

Figure F.4Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock 
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset, 
and 0-5V output range.  The histograms shown are R4open(dotted) and fault-free(solid) 

circuits. 
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Figure F.5: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock 
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset, 
and 0-5V output range.  The histograms shown are R4short(dotted) and fault-free(solid) 

circuits. 
 

Figure F.6: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock 
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset, 
and 0-5V output range.  The histograms shown are R5open(dotted) and fault-free(solid) 

circuits. 
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Figure F.7: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock 
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset, 
and 0-5V output range.  The histograms shown are R5short(dotted) and fault-free(solid) 

circuits. 
 

Figure F.8: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock 
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset, 
and 0-5V output range.  The histograms shown are R6open(dotted) and fault-free(solid) 

circuits. 
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Figure F.9: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz clock 
frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V offset, 
and 0-5V output range.  The histograms shown are R6short(dotted) and fault-free(solid) 

circuits. 
 

Figure F.10: Fault simulator results for  S16out ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R7open(dotted) and fault-

free(solid) circuits. 
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Figure F.11: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R7short(dotted) and fault-

free(solid) circuits. 
 

Figure F.12: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are C1open(dotted) and fault-

free(solid) circuits. 
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Figure F.13: Fault simulator results for S16out ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are C2open(dotted) and fault-

free(solid) circuits. 
 

Figure F.14: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R2short(dotted) and fault-

free(solid) circuits. 
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Figure F.15: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R3open(dotted) and fault-

free(solid) circuits. 
 

Figure F.16: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R3short(dotted) and fault-

free(solid) circuits. 
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Figure F.17: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R4open(dotted) and fault-

free(solid) circuits. 
 

Figure F.18: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R4short(dotted) and fault-

free(solid) circuits. 
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Figure F.19: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R5open(dotted) and fault-

free(solid) circuits. 
 

Figure F.20: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R5short(dotted) and fault-

free(solid) circuits. 
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Figure F.21: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R6open(dotted) and fault-

free(solid) circuits. 
 

Figure F.22: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R6short(dotted) and fault-

free(solid) circuits. 
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Figure F.23: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R7open(dotted) and fault-

free(solid) circuits. 
 

Figure F.24: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are R7open(dotted) and fault-

free(solid) circuits. 
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Figure F.24: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are C1open(dotted) and fault-

free(solid) circuits. 
 

Figure F.24: Fault simulator results for S16mag ORA metric for BiQuad filter at 5 MHz 
clock frequency (19.5 kHz effective frequency), Cup waveform, 5 V amplitude, 2.5 V 
offset, and 0-5V output range.  The histograms shown are C2open(dotted) and fault-

free(solid) circuits. 
 


