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Abstract—Non-Foster circuits can be used to improve the

performance and bandwidth of existing applications, and to

enable new technologies such as acoustic cloaking. Although

analog approaches for the implementation of non-Foster circuits

have existed for some time, digital discrete-time implementations

of non-Foster circuits have recently been introduced. Previous

digital discrete-time implementations of non-Foster circuits used

a backward difference method to design the digital non-Foster

circuit. In this paper, Pade and Prony modeling methods are

presented for the design of digital non-Foster RC series circuits.

The performance of the proposed Pade and Prony methods

are compared with the earlier approach using the backward

difference method.The Pade and Prony methods were shown to

better approximate resistance in the mid bandwidth region than

the backward difference method for a positive capacitance and

resistance as well as a negative RC circuit. Lastly, a prototype

using the Prony method to design a digital positive RC series

circuit was implemented on a microcontroller, with measured

results closely matching theory.

I. INTRODUCTION

Non-Foster circuits can be used to improve performance in a
variety of applications, such as impedance matching networks,
invisible acoustic sensors, and electrically-small antennas [1]–
[6]. Although analog approaches for the implementation of
non-Foster circuits have existed for some time, digital discrete-
time implementation of a non-Foster circuit have only recently
been introduced [7].

Prior approaches for the design of digital non-Foster cir-
cuits were based on a backward difference method, where a
discrete-time backward difference is used to approximate a
derivative [7], [8]. This backward difference design method
uses an approximation of the differential equations represent-
ing the corresponding analog non-Foster circuit to digitally im-
plement the analog circuit. However, other digital discrete-time
design techniques may result in alternative designs with dif-
ferent performance characteristics than the earlier backward-
difference method.

Therefore, this paper considers the design of a digital
non-Foster RC series circuit using Padé and Prony indirect
modeling methods [9]. In particular, the performance of the
Padé and Prony methods are investigated and compared with
the earlier approach using the backward difference method.

Section II summarizes the digital non-Foster circuit ar-
chitecture and prior backward difference design method. In
section III and IV, the Padé and Prony approximation methods
are described for the design of a digital non-Foster RC series
circuit using each method. The theoretical performance of the
Padé and Prony methods are compared with the backward
difference method in section V. In section VI, measured results
are given for a prototype of a Prony-method design of digital
positive RC series circuit implemented on a microcontroller.

II. PRIOR BACKWARD DIFFERENCE METHOD

Before discussing the Prony and Padé designs, the theory of
digital non-Foster circuits and the prior backward difference
design method is reviewed [7], [8]. In Fig. 1, the ADC with
clock period T digitizes the analog input voltage signal v

in

(t)

creating a discrete-time signal v

in

[n] = v

in

(nT). The DAC input
at the output of digital filter H(z) is then

v
DAC

[n] = h[n] ⇤ v
in

[n]

where H(z) in Fig. 1 is the z-transform of impulse response
h[n] in the convolution above.

The design goal is to find H(z) that produces the desired
analog impedance at v

in

(t) corresponding to the analog cir-
cuit. For the example of the analog RC series circuit shown to

Fig. 1. Block diagram of a digital non-Foster circuit with the corresponding
analog circuit shown on the left. The input voltage signal v

in

(t) is digitized
into v

in

[n] = v

in

(nT) by the ADC with clock period T . The digitized signal
undergoes convolution with the discrete-time filter H(z) resulting in v

DAC

[n]

= v

in

[n] * h[n]. This is converted back into an analog signal v

DAC

(t) by the
DAC. The resistance R

DAC

, sets the input current I

in

(t) [7], [8].978-1-5386-6133-8/18/$31.00 c� 2018 IEEE
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the left in Fig. 1, v
in

(t) = i
in

(t)R
ser

+ 1
C

R
i
in

(t)dt. Differ-
entiating with respect to time yields: dvin(t)

dt

= R
ser

diin(t)
dt

+
1
C

i
in

(t). Applying the backward difference approximation as
shown in [7] gives dvin(t)

dt

⇡ vin[n]�vin[n�1]
T

and i
in

[n] ⇡
vin[n]�vDAC [n�1]

RDAC
. This results in the backward difference filter

H
RC

(z) from [8]

H
RC

(z) =
V
DAC

(z)

V
in

(z)

=
(R

ser

C �R
DAC

C + T )z + (R
DAC

C +R
ser

C)

(R
ser

C + T )z � (R
ser

C)
(1)

From [7], the impedance of the non-Foster circuit is

Z
in

(s) =
V
in

(s)

I
in

(s)
⇡ sTR

DAC

sT �H(z)(1� z�1)

����
z=e

sT

. (2)

III. PROPOSED PADÉ DESIGN METHOD

The Padé approximation method is a form of indirect signal
modeling [9], where a signal g[n] is directly modeled as the
impulse response of a system, where h[n] approximates g[n]

and H(z) = Z(h[n]). In the Padé method,

H(z) =
Y (z)

X(z)
=

B(z)

A(z)

=

NBP
m=0

(b
m

z�m)

1 +
NAP
n=1

(b
n

z�n)

⇡
X

(g[n]z�1) = G(z) ,

(3)

where g[n] is the desired impulse response, X(z) = 1 and
Y(z) ⇡ G(z), then B(z)X(z) = A(z)Y(z) ⇡ A(z)G(z) results in
the Padé approximation form

B(z) = A(z)G(z) , (4)

or, after taking the inverse z-transform:
NAX

k=0

(a[k] g[n� k]) = b[n] where a0 = 1 . (5)

The Padé method then exactly matches the first few points
of h[n] to g[n] by solving for the filter coefficients. In matrix
form, the Padé method involves finding the solution for A and
B such that:

G A = B (6)

Since, our Padé approximation exactly matches three points
then (6) becomes

G A =

2

4
g[0] 0
g[1] g[0]
g[2] g[1]

3

5

1
a1

�
= B =


b0
b1

�
(7)

where the filter coefficients a1, b0 and b1 are solved for using
Padé procedure given in [9].

Fig. 2. Current iin[n] for Rser = 500 ohms, C = 0.1 µF, and T = 20 µs. Blue
curve is the continuous-time current iin(t), red dots are discrete-time current
samples iin[n].

IV. PROPOSED PRONY DESIGN METHOD

The Prony method forms a solution A and B given by (6) by
minimizing the square error over a variable number of points
of g[n], instead of exactly matching the first few points of
g[n]. It is based on the method of least squares minimization
for an over-determined system in (6). For the first few points,
the Prony method has zero error in approximating g[n] by
h[n], but typically has error for subsequent points. For an
example where eight points of g[n] are used in the Prony
method:

G A =

2

6664

g[0] 0
g[1] g[0]

...
...

g[7] g[6]

3

7775


1
a1

�
⇡


b0
b1

�
= B (8)

where the filter coefficients a1, b0 and b1 are solved for using
a least-squares Prony procedure given in [9].

V. RESULTS

The three design methods were first evaluated for a digital
series RC circuit with an impedance of

Z
inIdeal

(s) = R
ser

+
1

sC
(9)

with Rser equal to 500 ohms, and C equal to 0.1 µF. The
resistor at the DAC output, RDAC, is equal to 1000 ohms for all
cases. For the Padé and Prony methods, the impulse response
g[n] shown in Fig. 2 was calculated for the capacitor current
in an ideal analog positive RC series circuit over an interval
of 200 µs. The red dots in Fig. 2 denote the current samples
used for g[n] in the modeling equations (7) and (8) to solve
for the Prony and Padé filter coefficients.



Fig. 3. Comparison of Padé, Prony, and backward difference methods for the
positive RC circuit, for resistance Rser = 500 ohms, C = 0.1 µF, R

DAC

= 1000
ohms, and T = 20 µs. Real and imaginary parts of Padé, Prony, backward
difference models and ideal analog RC circuit impedance are plotted.

For eight current samples used for g[n] in the Prony
approximation, the resulting filter is

H
Prony

(z) =
�z + 1.2523

z � 0.7523
. (10)

Similarly, for three current samples used for g[n] in the Padé
approximation, the resulting filter is

H
Pade

(z) =
�z + 1.2788

z � 0.7788
. (11)

Substituting (10) and (11) into (2) yields the theoretical Prony
and Padé input impedances plotted in Fig. 3.

The dotted magenta, solid red, dashed green and solid black
curves in Fig. 3 denote the real part of the impedance of the
backward difference, Prony, Padé and ideal input impedances
respectively. The ideal impedance is from (9). Similarly, the
dashed cyan, solid blue, dotted green and solid black curves
denote the imaginary part of the impedance of the backward
difference, Prony, Padé and ideal approximations. The imagi-
nary impedance of the Padé and Prony approximations overlap
in Fig. 3, and hence are indistinguishable from each other.
Similarly, the real part of the impedance for the Padé and
Prony approximations begin to overlap from 2 kHz onward.
As seen in Fig. 3, the Padé and Prony designs have larger error
in the real part of their impedances at very low frequency,
but more nearly equal the desired 500 ohm resistance mid-
band when compared to the backward difference method. The
reactance of all three design methods are nearly equal across
the entire frequency range.

The design methods were then compared for a digital non-
Foster series RC circuit with a R

ser

= �500 ohms and C =
�0.1 µF. The impulse response g[n] shown in Fig. 4 is created
by calculating the capacitor current in an ideal analog negative
RC series circuit over a time interval of 200 µs. The red dots in
Fig. 4 denote the current samples used for g[n] in the modeling
equations (7) and (8) to solve for the Prony and Padé filter

Fig. 4. Current iin[n] for Rser = -500 ohms, C = -0.1 µF and T = 20 µs. Blue
curve is continuous-time current, red dots are discrete-time current samples
iin[n].

coefficients. The Prony approximation for eight current points
is

H
Prony

(z) =
3z � 2.7570

z � 0.7523
(12)

Similarly, the Padé approximation for 3 points is

H
Pade

(z) =
3z � 2.8364

z � 0.7788
(13)

Substituting (12) and (13) into (2) yields the theoretical Prony
and Padé input impedances plotted in Fig. 5.

The dotted magenta, solid red, dashed green and solid
black curves in Fig. 5 denote the real part of the impedance
of the backward difference, Prony, Padé and ideal impedance
respectively. Similarly, the dashed cyan, solid blue, dotted
green and solid black curves denote the imaginary part of
the impedance of the backward difference, Prony, Padé and

Fig. 5. Comparison of Padé, Prony and backward difference methods for the
positive RC circuit, for resistance R= -500 ohms, C = -0.1 µF, RDAC = 1000
ohms , and T = 20 µs. Real and imaginary parts of Padé, Prony, backward
difference models and ideal analog RC circuit impedance are plotted.



Fig. 6. Prototype using FRDM-K64F microcontroller board.

ideal impedance of (9). As seen in Fig. 5, the Padé and Prony
designs have larger error in the real parts of the impedance at
very low frequency, but more nearly equal the desired �500
ohms resistance mid-band when compared to the backward
difference method. The reactance of the Padé and Prony
methods are nearly equal to the ideal reactance across the
frequency range.

VI. IMPLEMENTATION

A Freescale FRDM-K64F embedded microcontroller was
used to implement the prototype shown in Fig. 6. As proof of
concept, a positive digital RC circuit was implemented using
the Prony approximation with R

ser

= 50 ohms, R
DAC

= 1000
ohms, C = 2 µF and T = 20 µs. Using (8) for 20 current
samples for this design yields a Prony approximation of

H
Prony

(z) =
�19z + 19.5502

z � 0.8184
. (14)

Substituting (14) into (2) yields the theoretical Prony input
impedances plotted in Fig. 7.

In Fig. 7, the input impedance is plotted for the frequency
range 500 Hz to 5 kHz. The dotted magenta, solid red, and
dashed black curves show the real part of the impedance
of the theoretical Prony, the measured Prony, and the ideal
impedance, respectively. Similarly, the solid blue, dashed
cyan, and dashed black curves are the imaginary part of
the impedance of measured Prony, the theoretical Prony, and
the ideal impedance, respectively. As seen in Fig. 7, the
theoretical results closely match the measured results for the
Prony design.

VII. CONCLUSION

Padé and Prony methods were compared to a previous
backward difference method for the design of a digital positive
RC and negative RC circuit. The Padé and Prony designs more

Fig. 7. Comparison of the theoretical, measured, and ideal impedance for
Rser = 50 ohms, C = 2 µF and T = 20µs. The real and imaginary parts
of the theoretical and measured Prony impedance are plotted along with the
ideal impedance of the positive RC circuit. The measured impedance closely
matches the theoretical Prony impedance calculated from (14).

closely match the desired resistance at the mid-band range,
but tended to degrade at very low frequencies compared to
the backward difference design. The reactance of the Padé and
Prony designs closely matched the backward difference design
for the positive RC circuit. However, the reactance of the Padé
and Prony designs for the negative RC circuit more closely
match the ideal impedance when compared to the backward
difference design. Measured impedance of a prototype Prony
design closely matches the predicted theoretical impedance.
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