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Useful insights into the complicated physics of gravitational waves can often be drawn from
approximations to analogous physics of electromagnetic waves. Here, we present a gravitational form
of the electromagnetic Chu limit that sets bounds on the achievable Q (quality factor) relating the
ratio of stored energy to radiated energy in the underlying fields. In particular, we answer two
fundamental physics questions: (1) what is the theoretical Q for gravitational quadrupole radiation
sources, and (2) can gravitational Q be observed from recent measured astronomical data?
Gravitational Q is shown to follow an inverse seventh-order power law, and gravitational-wave
data is used to find observed values of Q for GW170817. Inasmuch as electromagnetic Q serves a
central role in design and analysis of electrically-small antennas, the proposed gravitational Q offers
the potential for a similar utility in the design and analysis of gravitationally-small detectors and
quadrupoles.
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I. INTRODUCTION

Einstein’s 1916 general relativity field equations pre-
dicted the gravitational waves first observed in 2015, much
as Maxwell’s electromagnetic theory in the 1860s predicted
the radiowaves first observed byHertz in the 1880s and later
applied by Marconi in the 1890s [1–4]. Even before
Einstein’s general relativity theory, similarities between
electrostatics and Newtonian gravity lead Heaviside to
propose a gravitational analog to electromagnetics [5].
Such parallels between gravitational and electromagnetic
phenomena continue to be useful in understanding and
developing concepts within general relativity [6]. Therefore,
we similarly explore the development of the gravitational
counterpart to a fundamental and useful concept in the
theory of electromagnetic fields and antennas, the Chu limit
[7–10].
For over 50 years, the Chu limit has been used to provide

bounds on theQ, or quality factor, of antennas as a function
of antenna size, where Q is related to the ratio of stored
energy to radiated energy in electromagnetic fields. For
antennas, Q is of further practical significance, since it
corresponds to the ratio of antenna center frequency to
bandwidth. Thus, Q is of fundamental importance in the
design and analysis of antennas. Furthermore, the Chu limit
has also recently been shown to roughly predict the
quantum 1s-2p spontaneous emission relaxation time of
hydrogen atoms [11].

This wide-ranging utility of the Chu limit, from quantum
emission to antenna physics, raises the question of whether
a similar Q can be derived and observed for gravitational
quadrupole sources of gravitational waves. A second
question is whether observation of such a gravitational
Q may be out of reach, given the difficulty of gravitational
wave measurements.
Here, we show that it is not only possible to analytically

derive Q for gravitational quadrupole radiation sources, but
we also show that LIGO (Laser Interferometer Gravitational-
Wave Observatory) GW170817 data can yield observed
values for Q over a range of gravitational quadrupole sizes
[1,12–15]. The proposed gravitational Q depends on gravi-
tational-wave frequency and quadrupole size, and is shown
to exhibit a different power law than the electromagnetic
antenna Chu limit [16].
In the following, the theoreticalQ of gravitational quadru-

poles is derived, and observed values of gravitational Q are
computed from gravitational-wave data. The combination of
stored energy and radiation considered here is distinct from
earlier results by Marengo and Ziolkowski for purely non-
radiating sources and purely radiating sources in electro-
magnetics and general relativity [17]. As noted in earlier
work by the author [18], the notion of gravitational Q
developed here is distinct from the notion of mechanical
Q of cryogenic spherical gravitational antennas in
Merkowitz et al. [19]. Lastly, it should also be noted that
recent non-Foster andmetamaterial experiments show results
much better than the electromagnetic Chu limit would
permit, suggesting the potential that the proposed gravita-
tionalQ concepts could lead to similar gravitational detector
enhancements [20–22].*tpweldon@uncc.edu
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II. THEORY

Before proceeding with the derivation of the Q of
gravitational quadrupoles, it is helpful to first briefly review
the Chu limit for electromagnetic antennas. The Chu limit
(also known asWheeler-Chu limit or Chu-Harrington limit)
sets a lower bound on lossless linearly polarized electro-
magnetic antenna Q (quality factor) of [7,10]

Q ¼ 1

B
¼ f0

Δ
¼ 1

ka
þ 1

ðkaÞ3 ≈
1

ðkaÞ3 for ka ≪ 1; ð1Þ

where B ¼ Δ=f0 is fractional bandwidth, Δ is antenna
bandwidth in Hz, f0 is antenna center frequency in Hz,
a is radius of a sphere that would enclose the antenna,
wave number k¼2πf0=c¼2πf0=3×108¼2π=λ0 rad=m,
vacuum wavelength is λ0 m, and size-parameter ka ≪ 1
radian would constitute an electrically-small antenna.
Extending the result to certain circular polarization cases
results in a slightly altered cubic term of 0.5=ðkaÞ3, as
noted by Pozar [23]. Chu derived the limit from the energy
of components of the electromagnetic field, and a summary
in Sievenpiper [10] shows many decades of experimental
results where the Chu limit is never violated.
Next, we derive the theoreticalQ of gravitational quadru-

poles. In this, it is first useful to express some gravitational-
wave properties as a function of a wave number-size
product, similar to the ka parameter in the electromagnetic
Chu limit. To begin, consider the binary circular orbit of
Fig. 1. The luminosity in watts of a gravitational wave
produced by the inspiral andmerger of such a binary neutron
star pair, or pair of black holes, is [13,24,25]

L ¼ 32

5

ðm1 þm2Þ5ν2G4

d5sc5
ð2Þ

where the binary star masses are m1 and m2 in kg,
ν¼m1m2=ðm1þm2Þ2, and G ¼ 6.7 × 10−11 N · ðm=kgÞ2

is the gravitational constant. The orbital separation ds of the
two stars in meters is

ds ¼
�ðm1 þm2ÞG

ω2
orb

�
1=3

; ð3Þ

where orbital frequency ωorb ¼ 2πforb in rad=s is

ωorb ¼
ωgw

2
¼ 2πfgw

2
¼

�ðm1 þm2ÞG
d3s

�
1=2

; ð4Þ

for observed gravitational wave frequency ωgw rad=s.
Recalling that Chu parameter “a” is the radius of a

sphere enclosing an antenna, this would then correspond to
the larger orbital radius as in the binary star circular orbit of
Fig. 1, with

as ¼ ds
m1

m1 þm2

¼
�

m3
1G

ω2
orbðm1 þm2Þ2

�
1=3

; ð5Þ

where m1 > m2 and the smallest sphere enclosing the
binary star orbits is of radius as m. Then, rearranging (5),
the orbital frequency becomes

ωorb ¼
�

m3
1G

a3sðm1 þm2Þ2
�

1=2

: ð6Þ

The proposed gravitational-antenna size parameter “kas”
is then

kas ¼
ωgw

c
as ¼

2ωorb

c
as ¼

�
4m3

1G
asc2ðm1 þm2Þ2

�
1=2

ð7Þ

It is also useful to rearrange (7) and solve for as as a
function of kas, giving

as ¼
4m3

1G
ðkasÞ2c2ðm1 þm2Þ2

; ð8Þ

and substituting for as in (6) yields orbital frequencyωorb as
a function of the kas size parameter:

ωorb ¼
ðkasÞ3c3

8G
ðm1 þm2Þ2

m3
1

: ð9Þ

Alternatively, rearranging (9) gives size parameter kas as a
function of orbital frequency:

kas ¼
�

8ωorbGm3
1

c3ðm1 þm2Þ2
�

1=3

¼ 2m1

c

�
ωorbG

ðm1 þm2Þ2
�

1=3
: ð10Þ

Similarly, first substituting ds ¼ asðm1 þm2Þ=m1 in (2),
and then taking as from (8), the luminosity as a function of
size parameter kas is

FIG. 1. Binary star system with circular orbit, solar masses
m1 > m2, with barycenter denoted “B,” orbital separation ds, and
the larger orbital radius being as.
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L ¼ 32

5

ðm1 þm2Þ5ν2G4

ðasðm1 þm2Þ=m1Þ5c5

¼ ν2c5

160G

�
m1 þm2

m1

kas

�
10

; ð11Þ

where L determines the gravitational radiation component
later used in determining gravitational Q.
Next, the total available potential and kinetic energy

of the gravitational system is determined. To begin, the
Newtonian orbital energy is [24]

EN ¼ −
m1m2G
2ds

¼ −
m2

1m2G
2asðm1 þm2Þ

: ð12Þ

However, we propose that the total remaining available
energy is determined by the difference between the orbital
energy at any given orbital separation ds and the final
orbital energy at final orbital separation dmin at coalescence.
Accordingly, the available orbital energy is defined as

EA ¼ −
�
m1m2G
2ds

−
m1m2G
2dmin

�

¼ −
m1

m1 þm2

�
m1m2G
2as

−
m1m2G
2amin

�

¼ m2
1m2G

m1 þm2

�
1

2amin
−
ðkasÞ2c2ðm1 þm2Þ2

8m3
1G

�
; ð13Þ

where the minimum orbital separation can be determined
from the observed gravitational wave data as dmin ¼
½ðm1 þm2ÞG=ω2

max�1=3 m, where ωmax rad=s is the maxi-
mum observed orbital frequency. For GW170817, ωmax ≈
600π rad=s, and dmin ≈ 47 km.
Using the definition Q ¼ ωE=ðdE=dtÞ noted by

Sievenpiper et al. [10], and substituting the foregoing
results gives

Q¼ ωorbEA

dEA=dt
¼ωorbEA

L

¼ 20m7
1G

m2c2ðm1þm2Þ5
�ðkasÞ−7

2amin
−
ðkasÞ−5c2ðm1þm2Þ2

8m3
1G

�
;

ð14Þ

which is the desired result giving theoretical gravitational
quadrupole Q as a function of gravitational quadrupole
wave number-size parameter kas. In particular, note that for
kas ≪ 1, that Q tends to become inversely proportional to
the seventh power of kas. This inverse seventh-order
proportionality differs significantly from the inverse cubic
behavior of the electromagnetic Chu limit. Preliminary
results in [18] did not provide the equation for Q given
above in (2). Since the luminosity in (2) and orbital energy
in (13) account for all radiation losses, Q would include

both gravitational quadrupole radiation polarizations, plus
“þ” and cross “×.”
The result for gravitationalQ in (14) is an equality rather

than a theoretical bound, since it was derived for the
particular binary orbit scenario of Fig. 1, rather than an
arbitrary gravitational-wave source. However, for a given
total mass m1 þm2 with m1 ≥ m2 and for some given kas
during inspiral, it can be shown that Q from (14) is
minimized when m1 ¼ m2 for kas ≪ 1. In addition, anal-
ogies with electromagnetics would suggest that higher-
order gravitational multipoles would tend to increase Q,
although general relativity leads to a considerably more
complicated range of multipole expansions as noted by
Thorne in [26]. Notwithstanding, the result in (14) is also
limited by underlying slow-motion, weak-field, post-
Newtonian assumptions in the derivation of (2), and is
subject to nonrelativistic limitations inherent in (12) for
orbital energy [24]. Therefore, scenarios may exist where
even lower values of Q are possible, and so it remains to be
seen whether a more general result or lower bound for Q
can be found, given the complexities of general relativity.
Despite the foregoing limitations, the result for Q in (14)
would seem appropriate for the most common scenarios of
gravitational wave events, in light of Thorne’s [26] com-
ment that all gravitational-wave sources in the universe
today are probably isolated sources.

III. OBSERVED GRAVITATIONAL Q

The foregoing equations show that gravitational
quadrupole size parameter kas can be determined from
the gravitational wave frequency ωgw ¼ 2ωorb, and that
gravitational quadrupole Q can then be determined
from kas. Therefore, estimation of ωgw from observed
gravitational data will yield both kas and Q. We estimate
ωgw ¼ 2πfgw from the known time response of the fre-
quency chirp as [25]

1

fgw
¼ 8π

1251=8

�
G5=3m1m2

c5ðm1 þm2Þ1=3
t0
�

3=8

; ð15Þ

where the time before coalescence is t0 ¼ −t. Taking the
logarithm yields

lnðfgwÞ ¼ 4.88 − 3 lnðt0Þ=8; ð16Þ

for published GW170817 masses m1 ≈ 3.6 × 1030 kg and
m2 ≈ 2.2 × 1030 kg [13].
Figure 2(a) shows a thresholded version of the LIGO-

Livingston time-frequency representation of gravitational
wave GW170817 from Abbott et al. [16], extracting the
strongest portions of the signal shown as the gray (magenta
in color prints) regions near the dotted black curve. The
upper left inset of Fig. 2(a) shows the portion of the LIGO-
Livingston time-frequency data that was thresholded and
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used to generate Fig. 2(a). The vertical height of the sample
shown in the inset is approximately 70 pixels at every
frequency, even though the curvature of the chirp gives the
illusion of a thinner vertical slice toward the right side of
the inset.
The dotted black curve of Fig. 2(a) results from a cubic

polynomial fit to the logarithm of gravitational frequencies
fgw above threshold in gray (magenta in color prints)
regions. A cubic fit was chosen to provide extra degrees
of freedom, in case observed data deviated significantly
from the theoretical formula. The cubic fit shown is found
to be lnðfgwÞ¼ 4.884−0.3607 lnðt0Þ−0.001378½lnðt0Þ�2þ
0.0002857½lnðt0Þ�3, in good agreement with the theoretical
relation of (16). In fact, the last two terms of the polynomial
only contribute 2.8% to fgw ≈ 38 Hz at t ¼ −30 s, and
only contribute 0.2% to fgw ≈ 218 Hz at t ¼ −0.25 s.
The solid black curve in Fig. 2(b) shows the fitted

curve to fgw on linear scales for the 30 seconds before
coalescence, along with thin gray (magenta in color prints)

curves that indicate a two standard deviation error. The thin
gray (magenta in color prints) curves in Fig. 2(b) are two
standard deviations from the fitted curve at each time point,
using the standard deviation of frequencies above threshold
at each time point. At time instants where there are less than
6 frequency samples above threshold in Fig. 2(a), the
standard deviation is set to zero in Fig. 2(b). However, the
reader should note that the two-standard-deviation error
indicators do not include other error sources, such as
uncertainty in masses m1 and m2. Coalescence occurs at
t ¼ 0 in the plot of Fig. 2(b).
To find the variation in kas as a function of time,

substituting ωorb ¼ ωgw=2 in (10) gives

kas ¼
�

4ωgwGm3
1

c3ðm1 þm2Þ2
�

1=3

: ð17Þ

Applying this to Fig. 2(b), the solid black curve in Fig. 3
shows kas of GW170817 as a function of time, corre-
sponding to the solid black curve for the cubic fit to fgw in
Fig. 2(b). The thin gray (magenta in color prints) curves
provide an indicator of error, and are directly computed
from the thin gray (magenta in color prints) curves of error
for fgw in Fig. 2(b).
Lastly, theQ of the GW170817 gravitational quadrupole

can be computed from kas of Fig. 3, using (14). The solid
black curve in Fig. 4 shows Q as a function of time,
corresponding to the solid black curve for kas in Fig. 3.
The thin gray (magenta in color prints) curves provide an
indicator of error, and are directly computed from the thin
gray (magenta in color prints) curves of error for kas of
Fig. 3. At times where there are no frequency samples, the
error is set to zero. Thus, the Q of the gravitational quadru-
pole is seen to decrease from approximately Q ≈ 7.1 × 104

where kas ≈ 0.15 at 30 seconds before coalescence, to
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FIG. 2. Observed gravitational wave GW170817 frequency fgw
as a function of time t. (a) An extracted and thresholded portion
of the time-frequency representation from Abbott et al. [16]
where gray (magenta in color prints) regions are signals above
threshold, the dotted curve is fitted fgw, and the inset shows
portion from Abbott et al. used for threshold. (b) Plot of final
fitted fgw shown as solid curve, with thin gray (magenta in color
prints) curves indicating a two-standard-deviation error. Coales-
cence is at t ¼ 0.
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FIG. 3. Observed gravitational wave GW170817 gravitational
quadrupole size parameter kas as a function of time. Solid curve
is for fit to data, with thin gray (magenta in color prints) curves
indicating error in kas that would correspond to the two-standard-
deviation error in fgw of Fig. 2(b). Coalescence is at t ¼ 0.
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Q ≈ 1.2 × 103 where kas ≈ 0.25 just before coalescence.
As noted earlier, the thin gray (magenta in color prints) error
indicators do not include other possibly significant error
sources, such as uncertainty in masses m1 and m2.

IV. CONCLUSION

The theoretical Q of a gravitational quadrupole has been
derived, andQ has been shown to be proportional to ðkasÞ−7
for gravitationally-small sources having kas ≪ 1 rad.As for
electromagnetic antennas, kas is the size of the gravitational
source in radians at the gravitational-wave frequency. The
gravitational wave data was used to find time-dependent
observed values of kas for gravitational-wave GW170817.
Importantly, kas was shown to vary over a range of values
from kas ≈ 0.15 rad to kas ≈ 0.25 rad using measured
GW170817 data. This, in turn, allowed the variation of Q
for GW170817 to be observed as kas changed during the
inspiral of the binary neutron star. A somewhat counterin-
tuitive observation is that kas of GW170817 increased over
time, even as as decreased during the inspiral. Because
kas ¼ ωgwas=c, this counterintuitive result shows that ωgw

increases faster than as decreases during the inspiral of

GW170817. We also note that alternative attempts to
determine Q by independently estimating the luminosity
numerator and the changing energy in the denominator of
(14) tended to lead towardmore noisyQ estimates, and such
alternatives ultimately seemed to depend on the observable
of gravitational-wave frequency and the fundamental result
in (14).
The degree to which electrically-small antenna engineer-

ing insights may be applied to the understanding of binary
inspiral gravitational fields and the design of gravitational-
wave detectors remains an open question. In the results
presented for GW170817, the binary neutron star quadru-
pole remained gravitationally small with kas ≪ 1 rad
during the observed 30-second inspiral. The analogous
notion of electrically-small antennas with ka ≪ 1 is an
important concept for analyzing and understanding electro-
magnetic fields, and is a useful engineering tool for
designing better antennas, for enhancing antenna signal
strength, and for improving antenna bandwidth. Since Q
provides a measure of the ratio of stored energy to radiated
energy in electromagnetic fields of antennas, it is hoped
that gravitationalQmay offer similar utility in gravitational
field analysis. In addition, Q is useful in the design
of methods to enhance signal coupling from electromag-
netic antennas, such as non-Foster, metamaterial, and
passive-tuning methods [20–22]. Although the focus of
the present work has been on gravitational radiation
sources, similar results should apply to gravitational
detectors under reciprocity considerations and the gravita-
tionally-small dimensions of terrestrial detectors. Finally,
the proposed gravitational Q concepts may lead to future
gravitational detector design approaches, since recent non-
Foster and metamaterial experiments have shown results
much better than the electromagnetic Chu limit would
permit [20–22].
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