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The Design of Multiple Gabor Filters for
Segmenting Multiple Textures

Thomas P. Weldon,

Abstract— Gabor filters have been successfully employed
in texture segmentation problems, yet a general multi-filter
multi-texture Gabor filter design procedure has not been of-
fered. To this end, we first present a multichannel paradigm
that provides a mathematical framework for the design of
the filters. The paradigm establishes relationships between
the predicted texture-segmentation error, the power spec-
trum of the textures, the parameters of the Gabor filters,
the parameters of subsequent Gaussian postfilters, and the
predicted vector output statistics of multiple filter channels.
Using these mathematical relationships, we develop a Gabor
filter design procedure based on selecting the set of filters
associated with the lowest predicted texture-segmentation
error. We also include a classifier design and postprocessing
methods to provide a complete texture-segmentation sys-
tem. The development of our filter-design procedure and
underlying mathematical models provide new insight into
the design of multiple Gabor filters for the segmentation
of multiple textures. Finally, we present experimental re-
sults that confirm the efficacy of our new Gabor-filter de-
sign procedure and support the underlying mathematical
framework.

Keywords—Gabor prefilter, texture segmentation, statisti-
cal image analysis, texture analysis, computer vision, image
segmentation.
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I. Introduction

More than a decade has passed since Daugman showed
that Gabor filters provide optimal Heisenberg joint resolu-
tion in space and spatial-frequency, and showed that Gabor
filters exhibit spatial responses similar to receptive field
profiles in mamalian vision [1]. Since then, investigators
have successfully employed Gabor filters in a wide range of
image-processing applications, including texture segmenta-
tion [2]–[16], document analysis [17], [18], image coding [1],
[19], retina identification [20], target detection [21], [22],
fractal dimension measurement [23], edge detection [24],
line characterization [25], and image representation [26].
In spite of such wide ranging applications of Gabor filters,
a comprehensive design procedure for a set of Gabor filters
has not been offered. Thus, we present a new approach for
the design multiple Gabor filters for texture segmentation
and a new mathematical model that forms the basis of the
method.

It may appear contradictory to suggest on one hand that
Gabor filters have been applied successfully to a wide range
of problems, while on the other hand suggesting that a
general design procedure does not exist. However, we con-
tend that limitations in prior approaches either severely
restricted the number of candidate filters, constrained the
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number of textures or filters, or did not directly consider
the vector output from a set of filters. These earlier meth-
ods typically consisted of selecting filters from some prede-
termined subband, wavelet, or other filter-bank decomposi-
tion (filter-decomposition approach) or consisted of design-
ing one filter per texture or one filter per pair of textures
(filter-design approach). Further, earlier efforts do not pro-
vide vector mathematical relationships between constituent
textures, filter parameters, output statistics, and predicted
segmentation error. Thus, our approach affords new insight
into the problem.

Several investigators considered
various filter-decomposition approaches. A wavelet decom-
position modeled after biological vision systems was used
by Daugman [1], and a similar decomposition was used by
Jain and Farrokhnia [4]. Other decompositions were pro-
posed by Randen and Husøy [27], Turner [28], Malik and
Perona [29], Bigün and du Buf [9], [30], and Chang and
Kuo [31]. In these approaches, the frequency domain was
essentially subdivided using a rather sparse set of predeter-
mined candidate filters that were not necessarily optimum
for a given texture-segmentation task. The computatonal
burden associated with the large number of filters in these
approaches may not be tolerable in certain applications,
such as interactive or operator-assisted applications. Fur-
thermore, a large feature-vector dimension at the output
of a large filter bank may require a complicated classifier
and may be subject to “the curse of dimensionality [32].”
Although some work has been done to reduce the dimen-
sionality of the feature space [4], [9], the resulting dimen-
sion remains fairly large (approx. 15), and potential dif-
ficulties with a complicated classifier and with the “curse
of dimensionality” remain. Finally, we avoid sophisticated
classifiers such as clustering methods, since such classifiers
could tend to obfuscate the fundamental performance of
the filters and could hide useful insights into the processes
that underly the segmentation of multiple textures with a
small set of Gabor filters.

Investigators have also considered various filter-design
approaches where the filters were designed for a partic-
ular texture-segmentation problem. The filter-design ap-
proach generates a set of filters with characteristics tai-
lored to a specific segmentation task, offering potential to
reduce the segmentation error or to reduce the number of
filters. In one approach, Bovik et al. designed one Ga-
bor filter for each texture under consideration [2], [3]. The
center frequency of each Gabor filter was set equal to a
peak frequency in the spectrum of the corresponding tex-
ture, and the Gabor filter bandwidth was set in proportion
to its center frequency. A similar approach was proposed
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by Tan [16]. A second filter-design approach developed by
Dunn et al. employed a detailed procedure for designing
a single filter to segment two textures [7], [8]. In this ap-
proach, measured output statistics and a Rician statistical
model were used to predict image-segmentation error and
establish the filter design.

These earlier filter-design approaches omitted the vec-
tor nature of the output (considering one filter alone) or
omitted the responses to each texture under consideration
(focusing on the response of a single texture). First, Bovik
et al. did not make use of the response of each filter to tex-
tures other than the one texture that a filter was designed
for; i.e., they endeavored to select filters that responded
only to a single texture [2], [3]. Second, prior methods of
the present authors were limited to the design of a single
filter for segmenting a bipartite (two-texture) image [7], [8],
[11], and more recently the design of a single filter to seg-
ment multiple textures [10], [12], [13]. Third, although the
present authors have considered Gabor prefilter design in
concert with a Gaussian postfilter [10], [12], [13], the de-
sign of a set of prefilters in concert with a set of postfilters
remains to be addressed. Finally, the previous methods do
not strictly provide a comprehensive vector mathematical
framework to estimate all necessary parameters for a set of
Gabor filters accompanied with Gaussian postfilters.

We present a method for the design of multiple Gabor
prefilters1 for texture segmentation that overcomes the lim-
itations of previous approaches and provides fresh insight
to the problem. Our method is a filter-design approach,
whereby a set of Gabor prefilters and subsequent Gaussian
postfilters are designed for a specific texture-segmentation
task. Starting with a set of exemplars for each texture un-
der consideration, the filters are designed to minimize seg-
mentation error. Since our filter design procedure is based
directly on a measure of predicted image-segmentation er-
ror, we avoid potential shortcomings of filter design meth-
ods based on least-square image-reconstruction criteria
that do not necessarily assure minimization of segmenta-
tion error [33].

We first proceed to develop a multichannel paradigm2

that is the mathematical framework upon which our
Gabor-filter design procedure is based. The multichan-
nel paradigm provides mathematical relationships between
the power spectrum of the textures, the parameters of the
Gabor prefilters, the parameters of subsequent Gaussian
postfilters, the vector output statistics of the filter set, and
the predicted image-segmentation error. Then, using these
mathematical relationships, the filters are designed to min-
imize the image-segmentation error. Thus our design pro-
cedure is a supervised filter design method, wherein the
resulting design is based on samples of the textures under
consideration.

1Since our methods also incorporate the effects of a subsequent
Gaussian postfilter, we refer to the Gabor filters used in our approach
as Gabor prefilters.

2Paradigm is a fancy word for a model. We hope that this fancier
term will afford our work increased notoriety, nigh unto that con-
ferered upon wavelets (which are of course nothing more than a re-
stricted subset of our work).

Throughout the development, we retain simplicity in our
mathematical models and present efficient algorithms to
compute intermediate results. Simplicity and computa-
tional efficiency are desired both to enhance the speed of in-
teractive applications and to address the inordinate number
of possible filter combinations. To illustrate the magnitude
of the problem, consider an N ×N image. Then, if we con-
sider N2/2 candidate filter center frequncies, log2(N) filter
bandwidths, and a set of only 4 filters, there are approx-
imately (N2 log2(N)/4)4 possible filter-channel combina-
tions or 3×1020 combinations for N = 256. Compounding
this, the vector output statistics and associated classifica-
tion error are to be computed for each filter combination.
Even if 108 filter-channel combinations could be evaluated
each second, the computations for N = 256 would take
approximately 105 years. The number of filter combina-
tions compell us to retain simplicity in our mathematical
models and to use efficient algorithms wherever possible.
Even with such attention to computational issues, we must
later compromise by using a forward sequential filter de-
sign algorithm to mitigate this severe complexity. Finally,
we note that our method does not require explicit filter-
ing of textures to measure output statistics, thus saving
significant computation.

An added benefit of the multichannel paradigm is that
it enables us to predict vector output statistics that can
be used directly as the basis for a Bayesian classifier. We
include such a classifier in our approach, both to provide a
complete texture-segmentation system and to experimen-
tally confirm the the performance of the resulting system.
Thus, our design procedure results in a complete texture-
segmentation system complete with the designed set of fil-
ters and Bayesian classifier. Since the resulting system is
based on the multichannel paradigm, our experimental re-
sults not only confirm the effectiveness of the filters but
also confirm the underlying mathematical models. Finally,
without unduly extending the scope of the paper, we briefly
overview some post-processing steps that we reduce bound-
ary and localization error in our experiments, and that
seem to improve results when a very small set of filters
are used.

In Section II, we define the problem under considera-
tion. Then in Section III, the mathematical models com-
prising the multichannel paradigm are given. The filter
design procedure based on the multichannel paradigm is
then given in Section IV. Section V briefly describes the
classifier and postprocessing steps that are used to reduce
error at texture boundaries. Experimental results are given
in SectionVI.

II. Problem

Before we describe the multichannel paradigm and filter-
design procedure, we briefly define the Gabor filter design
problem. In our approach, we consider not only the design
of multiple Gabor prefilters, but also the design of subse-
quent Gaussian postfilters as shown in Fig. 1. We refer
to a single cascade of a Gabor prefilter hj(x, y), magni-
tude operator | · |, and Gaussian postfilter gpj(x, y) as a
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filter channel. Thus, we refer to the k-channel architecture
shown in Fig. 1 as the multichannel scheme. Further, we
consider the case of multiple channels (k > 1), although
our methods can accommodate a single channel.

The input image i(x, y) is assumed to be composed of
disjoint regions of N different textures. Since our filter
design approach is a supervised method, we also require
representative samples of each of the N textures denoted
t1, t2, . . . , tN with N ≥2. These samples serve as the basis
for the design of the k filter channels, the classifier, and the
postprocessing.

In each filter channel, the input image i(x, y) is first fil-
tered with a bandpass Gabor prefilter having a spatial im-
pulse response hj(x, y),

hj(x, y) = g(x, y) ej2π(ujx+vjy)

=
1

2πσ2
gj

e
− (x2+y2)

2σ2
gj ej2π(ujx+vjy) , (1)

where g(x, y) is a two-dimensional Gaussian, and the sub-
script j ∈ {1, 2, . . . , k} indicates the particular channel in
Fig. 1. The impulse response hj(x, y) is a complex si-
nusoid with center frequency (uj , vj) that is modulated
by a Gaussian envelope [7]. The scale, or size, of the
envelope of hj(x, y) is determined by σgj . The parame-
ters (uj , vj, σgj) then completely determine the Gabor pre-
filter hj(x, y) in channel j. For simplicity, we also assume
that the Gaussian envelope of hj(x, y) is a symmetric func-
tion. The effect of an asymmetric Gaussian envelope is
given elsewhere [8], and the present methods can accom-
modate asymmetric hj(x, y) by simply replacing the sym-
metric form given in (1).

Taking the Fourier transform of hj(x, y), we find the fre-
quency response of the Gabor prefilter Hj(u, v):

Hj(u, v) = F{hj(x, y)} = G(u− uj, v − vj) , (2)

where F{·} is the Fourier transform operator, and where
G(u, v) is the Fourier transform of the Gaussian g(x, y):

G(u, v) = F{g(x, y)} = e
−2π2σ2

gj
(u2+v2)

. (3)

The output of the prefilter ihj (x, y) is then the convolution
of the input image with the filter response,

ihj (x, y) = hj(x, y) ∗ i(x, y) , (4)

where ∗ denotes convolution in two dimensions. We use the
subscript “hj” in ihj (x, y) to indicate the output of Gabor
prefilter hj(x, y) in the j th filter channel.

The next processing step in each filter channel is to com-
pute the magnitude of the output of the Gabor prefilter

mj(x, y) = |ihj (x, y)| = | hj(x, y) ∗ i(x, y) |. (5)

The statistics of mj(x, y) have been shown to be approxi-
mately Rician for bandpass filtered textures [10], [11], [15],
[34], similar to the envelope of a bandpass-filtered carrier
with noise in communications [35]–[37].

The final step in each filter channel is to apply a low-pass
Gaussian postfilter gpj (x, y) to prefilter output mj(x, y)
yielding the postfiltered image

mpj (x, y) = mj(x, y) ∗ gpj (x, y) , (6)

with

gpj(x, y) =
1

2πσ2
pj

e
− (x2+y2)

2σ2
pj , (7)

and where the postfilter parameter σpj determines the
Gaussian postfilter in the j th channel.

Each filter channel j is completely determined by the set
of four parameters (uj , vj, σgj , σpj) that define the Gabor
prefilter and Gaussian postfilter. The values of these four
filter parameters are not only free to vary within a given
channel, but are free to vary from channel to channel. In
each channel, we refer to ihj (x, y) as the prefiltered image,
mj(x, y) as the prefilter output, and mpj (x, y) as the post-
filter output.

The output of the k filter channels form a k-dimensional
feature vector at each point in the N × N original image
i(x, y). Using the k postfilter outputs, the vector classifier
shown in in Fig. 1 then generates theN×N classified image
c(x, y). A Bayesian classifier based on predicted multivari-
ate output statistics is used. Finally, provision is made for
postprocessing of the classifier output to improve perfor-
mance at boundaries between different textures. The re-
sult of the additional postprocessing of the classified image
c(x, y) gives the final segmented N ×N image is(x, y).

Within the context of the multichannel scheme, we may
now define the multi-filter multi-texture design problem:

Given representative samples of the N ≥ 2 tex-
tures, design a set of k filter channels and asso-
ciated classifier such that the image-segmentation
error is minimized.

III. Multichannel Paradigm

Before developing the filter design procedure, we present
the multichannel paradigm. The multichannel paradigm is
a collection of mathematical models for the multichannel
scheme that provide relationships between the frequency
spectrum of sample textures, the parameters of the k Ga-
bor prefilters, the parameters of the k Gaussian postfilters,
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Fig. 1. Multichannel scheme. Block diagram of image processing operations: Gabor prefilter hj(x, y), magnitude operator | · |, Gaussian
postfilter gpj (x, y), vector classifier, and postprocessing.

the multivariate probability density of the k-dimensional
output vector, and the predicted image-segmentation er-
ror. In Section III-A, we first develop the realtionship be-
tween the sample textures, filter parameters, and multi-
variate probability density of the k filter outputs. Then,
we use the predicted multivariate probability density to
provide an estimate of segmentation error in Section III-B.

A. Statistical Model

The first step in our development is to establish the re-
lationship between the vector output statistics of the k
channels, the parameters of the k Gabor prefilters, the pa-
rameters of the k Gaussian postfilters, and the frequency
spectrum of sample textures. To do this, we briefly review
prior results on the relationship between the texture spec-
tran filter parameters, and output statistics for a single
filter channel. We then generalize these results to the case
of multiple filter channels.

In previous research on the design of single filter chan-
nels [10], [11], [34], we showed that the output of a Gabor
filter can be modeled as a dominant complex exponential
plus bandlimited noise. One interpretation of this model is
that the dominant sinusoid may represent some underlying
periodicity in a texture, and the noise may represent some
random feature or variations in the texture. Another inter-
pretation is that the output of the Gabor prefilter is a band-
pass passband containing some maximum in the frequency
spectrum that we call the carrier, with the remainder of the
spectrum being modeled as noise. In either event, let Aij
represent the amplitude of the dominant spectral compo-
nent at some frequency (uij vij) within the passband, and
let nij(x, y) represent the remaining portion of the pass-
band signal for channel j and texture ti. Then, the output
of the Gabor prefilter can be modeled as

ihij (x, y) ≈ Aij e
j2π(uij x+vij y+θ) + nij(x, y) . (8)

where θ accounts for variable phase shift in the sinusoid.
The absolute value of the Gabor filter output in (8) is

then taken for each Gabor prefilter in Fig. 1. In commu-
nication systems, it is well known that the envelope of a
bandpass sinusoid plus white gaussian noise follows a Ri-
cian probability density function (pdf) [35]–[37]. Similarly,
we have shown that the prefilter outputmj(x, y) follows a
Rician pdf.

Let mij(x, y) denote the prefilter output in channel j
for texture ti. Then, the probability density function
pi(mj , Aij, Nij) describing the statistics of mij(x, y) is Ri-
cian [10], [11], [15], [34]:

pi(mj , Aij, Nij) =
2mj

Nij
e
−(

m2
j
+A2

ij
Nij

)
I0(

2mjAij

Nij
) (9)

where mj ∈ mij(x, y), pi(mj , Aij, Nij) is the pdf of
mij(x, y), and I0(·) is the modified Bessel function of the
first kind with zero order [7], [35]–[38]. A2

ij represents the
power of the dominant sinusoid, and Nij represents the
remaining power in the passband modeled as noise.

The parameters A2
ij and Nij in (9) determine the statis-

tics at the output of each Gabor prefilter, and we have pre-
viously shown that they can be computed from the power
spectra of the sample textures ti. We briefly review the
results [7], [35]–[38].

Let Si(u, v) be the power spectrum of texture ti, and
define Pi(u, v, σg) as the frequency-domain convolution

Pi(u, v, σgj) = |G(u, v)|2 ∗ Si(u, v) , (10)

where |G(u, v)| is the Gaussian kernel from (2) describing
the envelope of a Gabor prefilter for some σgj . Pi(U, V, σg)
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can be calculated efficiently for all Gabor prefilter center
frequencies (U, V ) simultaneously using the form

Pi(u, v, σg) = F { g(x, y) ∗ g(x, y) Ri(x, y) }

(11)

where F {} denotes the Fourier transform. A fast Fourier
transform (FFT) is used to implement the convolution.
The FFT implementation then gives Pi(u, v, σg) at a dis-
crete set of center frequencies (u, v) for a particular σg .

Using (10), we can solve for A2
ij and Nij as a function

of the Gabor prefilter parameters (u, v, σg) = (uj, vj, σgj)
that define the filter passband:

A2
i (u, v, σgj) ≈ Pi(u, v, σgj)−Ni(u, v, σgj) , (12)

and

Ni(u, v, σgj) ≈
Pi(u, v, σgj)− Pi(u, v, σgβ)

[1− (
σgj
σgβ

)2]
. (13)

and

A2
ij = A2

i (uj , vj, σgj)

Nij = Ni(uj, vj, σgj) , (14)

where σgj and σgβ are two prefilter envelope scales with
σgβ ≈ 2σgj that are used for the purpose of finding A2

ij

and Nij . We use = (uj , vj, σgj) instead of = (uj , vj, σgj) to
explicitly indicate that they are variables in (10) – (13).

While the preceding discussion provides an analytical ba-
sis for the design method and insight into each processing
stage, a graphical interpretation provides added perspec-
tive on the underlying principles. A one-dimensional illus-
tration is presented in Fig. 2. All four plots in the figure
are one-dimensional representations of corresponding two-
dimensional functions from the previous development. The
top two plots depict the squared magnitude of two Gaus-
sian kernels G(u) having different spatial scales σg and rep-
resent one-dimensional versions of the squared magnitude
of G(u, v) in (3). The third plot is a power spectrum S(u)
consisting of a flat spectral region denoted by “a” and an
impulse denoted by “b.” For the purpose of discussion,
one may consider “a” to be a spectral region dominated
by noise, and “b” to be a spectral region dominated by a
sinusoid that generates the impulse in the spectrum. This
third plot from the top of the figure corresponds to the
power spectrum Si(u, v) of a texture.

The bottom plot in Fig. 2 depicts the convolution of
the Gaussian kernels in the first two plots with the power
spectrum of the third plot and corresponds toPi(u, v, σg) in
(10). In region “a,” the convolution of S(u) with |G1(u)|2 is
smaller in magnitude than S(u)∗|G2(u)|2. This is the result
of the wider bandwidth ofG2(u) passing a larger portion of
region “a” in the power spectrum S(u). Consequently, the

G
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0
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Fig. 2. One-dimensional graphical interpretation of the calculation
of Pi(u, v, σg) = Si(u, v) ∗ ∗|G(u, v)|2. The two upper frequency
spectra represent two Gaussian kernels G(u) with different widths
determined by σgj and σgβ . The third spectrum from the top

is a one-dimensional representation of a S(u) with a flat noise-
like region “a”, and an impulse “b” representing some underly-
ing sunusoidal component of a texture. The bottom frequency
spectrum illustrates the result of convolving each of the top two
Gaussian kernels with the power spectrum in the third plot. In
noise-like region “a” there is a large difference, while the differ-
ence is zero at the impulse “b.”

large difference between the two convolvutions in region
“a” leads to a large estimate for the corresponding noise
term Ni(u, v, σgα) in (13).

At the frequency of the impulse “b,” however, the
two convolutions S(u) ∗ |G1(u)|2 and S(u) ∗ |G2(u)|2 be-
come equal. This occurs because |G1(u)|2 = |G2(u)|2 at
u = 0. Hence, the corresponding difference Pi(u, v, σgα) −
Pi(u, v, σgβ) in (13) becomes zero at the frequency of
the impulse “b.” Consequently, the estimate of noise
Ni(u, v, σgα) in (13) is also zero at “b,” and all of the
prefilter output power is attributed the sinusoidal term
A2
i (u, v, σgα) in (12). Alternatively, (13) and (12) may be

considered as local measures of the “flatness” of the texture
power spectrum Si(u, v).

The means µgij and variances s2
gij

of the prefilter output

mij(x, y) for channel j and texture ti are determined by
the Rician pdf:

µgij =

∞∫
0

mj pi(mj , Aij, Nij) dmj (15)

s2
gij

=

∞∫
0

(mj − µgij)
2 pi(mj , Aij, Nij) dmj . (16)

As the final step within each of the k filter channels, the
postfiltering operation performs a spatial average of the



6 HTTP://WWS2.UNCC.EDU/TPW/, February 9, 2007

prefilter output mij(x, y). We have shown that this leads
to Gaussian probability density functions for the postfilter
outputs mpij (x, y) [10], [11], [15], [34]. The means µpij
and variances s2

pij of the postfilter outputs mpij (x, y) are
derived from the prefilter means and variances using the
parameters σgj and σpj :

µpij = µpi(uj, vj, σgj , σpj) ≈ µgij

s2
pij = s2

pi(uj , vj, σgj , σpj) ≈
s2
gij σ

2
gj

σ2
pj

. (17)

where σ2
gj < σ2

pj , and we have explicitly shown the depen-
dence on filter parameters. Although we have included the
subscripts “ij” in the foregoing discussion, the results are
for a single filter channel only. We now proceed to extend
the results to the multichannel sceme.

The vector output statistics of k channels is a function
of the parameters for all k channels, so we define a matrix
Θk that determines the filter parameters:

Θk =


θ1

θ2

...
θk

 =


u1 v1 σg1 σp1

u2 v2 σg2 σp2

...
...

...
...

uk vk σgk σpk

 (18)

where each row in Θk

defines the parameters (uj, vj, σgj , σpj) for a single chan-
nel.

We propose a multivariate Gaussian model for the vector
output statistics of a set of k filter channels, since a Gaus-
sian pdf provides a good model for the output of a single
channel. The multivariate Gaussian pdf for texture ti for
a given set of filter parameters Θk is

pi(mp,Θk) =

1

(2π)k/2|Ci |1/2
e−(

(mp−µi)TCi
−1

(mp−µi)
2 )(19)

with

mp =


mp1

mp2

...
mpk

 µi =


µpi1
µpi2

...
µpik

 (20)

and

Ci = E
[
(mp −µi)(mp −µi)

T
]

(21)

where mp is a sample of the k-dimensional postfilter-
output vector, mpj ∈ mpij (x, y), µi is the mean postfilter-
output vector, and µpij is the mean of postfilter output
mpij (x, y). Ci is the k × k covariance matrix of the post-
filter outputs for texture ti, E[ · ] indicates expected value,
supersctipt T indicates transpose, and element ciαβ in row
α and column β of Ci is

ciαβ = E[(mpiα − µpiα)(mpiβ − µpiβ )] . (22)

The argument Θk is explicitly included in (19) to indi-
cate that the output statistics depend in the filter parame-
ters. This dependency arises since the mean vectorµi and
covariance matrix Ci are both depend on Θk because the
means and variances of the filter outputs depend on the
filter parameters.

The mean vector µi in (20) can be determined for
each texture ti and each set of candidate filter parame-
ters (uj , vj, σgj , σpj) using (17). The covariance matrix Ci
in (21) presents greater difficulty, since it implies a need
for samples of the postfilter output for all candidate filters.
Even with such samples, the computation ofCi each set of
candidate filter parameters is not practical because of the
huge number of possible filter combinations. However, the
diagonal elements of the covariance matrix are given as s2

pij

from (17). Thus, we propose using the values of s2
pij

along
the diagonal of Ci with all off-diagonal elements equal to
zero:

Ci ≈


s2
pi1

0 · · · 0

0 s2
pi2

. . . 0
...

. . .
. . .

...
0 · · · · · · s2

pik

 . (23)

where s2
pij are from (17). An added advantage of the diag-

onal form for Ci is that it greatly simplifies the calculation
of the determinant and inverse needed later when we esti-
mate segmentation error.

This approximation of Ci implies that the k features cor-
responding to the postfilter outputs are uncorrelated. To
reduce the likelihood of having strongly correlated features,
the covariance matrix Ci is approximated using (23) un-
der the additional restriction that constituent Gabor pre-
filters in any set of candidate filters are not permitted to
have significantly overlapping spatial-frequency responses.
Thus we also require any pair of Gabor prefilters in Θkb
to be separated in frequency by more than the sum of the
two bandwidths, as defined by the radius of the e−1/2 at-
tenuation point in (2). A filter and its mirror image re-
flected across the u and v frequency axes are considered
equivalent for the purposes of eliminating overlapping re-
sponses. For example, filters with parameters (U, V, σg)
and (−U,−V, σg) are considered identical and are disqual-
ified from being used together in a multichannel system.
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B. Segmentation Error Measure

The previous section established a multivariate Gaussian
statistical model for the vector output of k filter channels.
This suggests that the Bhattacharyya distance is an appro-
priate measure of feature performance [39]. Below, we use
the Bhattacharyya distance to form an estimate of segmen-
tation error.

Consider two textures tα(x, y) and tβ(x, y). The Bhat-
tacharyya distance B(tα, tβ,Θk), or B-distance, between
the two textures for a given filter bank determined by Θk

is

B(tα, tβ,Θk) =
1

8
(µα − µβ)T

[
Cα +Cβ

2

]−1

(µα − µβ)

+
1

2
ln

(∣∣ 1
2 (Cα +Cβ)

∣∣
|Cα|1/2|Cβ|1/2

)
(24)

where µα and µβ are the mean vectors, andCα andCβ are
the covariance matrices associated with the two textures.
The B-distance provides an upper bound for the classifi-
cation error Ec(Θk) of the two textures. A similar upper
error bound forN multivariate Gaussian classes is [33], [40]

Ec(Θk) <

N−1∑
α=1

N∑
β=α+1

(PαPβ)1/2ραβ (25)

where the two-class Bhattacharyya coefficients ραβ are

ραβ = e−B(tα ,tβ,Θk) ,

and the dependence of the error on the filter channel pa-
rameters is explicitly indicated by the argument Θk in (25).
Equations (24) and (25) provide the relationship between
the image-segmentation error and the multivariate Gaus-
sian statistics of the vector output of the k filter channels.
In the abscence of additional information, the a priori prob-
abilities Pα are taken to be equal.

In practice, the error measure in (25) is effective for mul-
tichannel filter design when the number of textures is very
small (N < 4). However, we have observed that segmen-
tation error deteriorates rapidly as the number of textures
increases when filters are designed using (25). This deteri-
oration is apparently caused by an overstatement of error
in (25) as a larger number of textures crowd the feature
space.

The worst-case error in (25) occurs when all of the tex-
tures are identically distributed. In this case, the Bhat-
tacharyya coefficients ραβ in (25) are all equal to one, and
with equal a priori probabilities equation (25) becomes:

Ec(Θk) <
N−1∑
α=1

N∑
β=α+1

(PαPβ)1/2 =
1

N

(
N

2

)
=
N − 1

2
(26)

where

Pα =
1

N
α = 1, 2, . . . ,N

µα = µβ ∀ α, β

Cα = Cβ ∀ α, β .

Thus, it is seen that the upper bound of the classification
error Ec(Θk) can greatly exceed one for large numbers of
textures. This result supports our observation that filters
designed using (25) performed more poorly as the number
of textures N increased. In situations with a larger number
of textures N or with a smaller number of filter channels
k, the error in (25) can more easily exceed a value of 1. To
prevent the error estimate from exceeding 1, and to improve
the filter algorithm performance over a wider range of N ,
we propose the following modification to equation (25) as
an estimate to the classification error:

Ec(Θk) ≈
1

N − 1

N−1∑
α=1

N∑
β=α+1

(PαPβ)1/2ραβ (27)

where the worst case upper bound on Ec(Θk) in (27) be-
comes 1

2 .

C. Total Error Measure

The previous section formulated an estimate of error
based on classification error Ec(Θk). However, segmen-
tation of textured images requires not only the accurate
classification of textures within regions, but also the accu-
rate localization of boundaries between regions. Thus, as
the final component in our development of a measure of
image-segmentation error, we include a measure of error at
texture boundaries.

Although the error Ec(Θk) provides a measure for the
accurate classification of texture within regions, it does
not directly address the problem of accurate localization of
boundaries between textured regions. Any inaccuracies in
boundary locations will necessarily contribute to the over-
all segmentation error, and we refer to these errors as lo-
calization error. In our work, we have found it useful to
consider two different types of localization error that arise
at boundaries between two different textures: edge error
and corner error.

We define edge error as the error in determining the
boundary between two textures when the boundary is a
straight line, and when there are no corners or other dis-
continuities in the vicinity of the boundary. We define cor-
ner error as the error in determining the boundary between
two textures when the boundary points are in the vicinity
of a right-angle corner that defines the texture boundary.
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(a) (b) (c)

Fig. 3. Segmented square, illustrating two types of error: edge-error and image error. (a) Original 100 × 100 square with gray scale = 200
100on 256 × 256 black background with gray scale = 0. (b) Gaussian filtered image, σ = 20. (c) Segmentation of filtered image with
threshold = 100. There is zero edge error in the image since the boundaries are accurately located (bright white line segments), however
significant corner error is apparent (black regions inside square).

In Fig. 3, we illustrate these two types of error. The
original image consists of a square region with gray scale
of 200 superimposed on a black background with gray scale
of 0. The image is filtered by a lowpass Gaussian filter with
σ = 20, resulting in the image in Fig. 3(b). Application of
a threshold of 100 to the filtered image results in the seg-
mentation shown in Fig. 3(c). For convenience, an outline
of the original square is superimposed on the segmentation.
In this example, there is no edge error as can be seen by
inspecting the properly determined boundary indicated by
the bright line segments at the midpoints of the edges of
the square in Fig. 3(c). Conversely, there is significant cor-
ner error in this image indicated by the black pixels located
within the interior of the corners of the square region.

The example shown in Fig. 3 also illustrates the tradeoff
between corner error and edge error when a simple thresh-
old is used for segmentation. Obviously, any improvement
in corner error that would be achieved by changing the
segmentation threshold would come at the expense of in-
creased edge error. For this example, it is apparent that
no threshold results in zero corner error. Although the
example is admittedly simple, it illustrates the complex in-
teraction between the filter parameters, classifier scheme,
image geometry, within-region classification, and boundary
localization.

Our approach to edge error and corner error is to address
these two types of error separately. First, the edge error
is addressed by using a mixture distribution to obtain a
slightly modified version of a Bayesian classifier based on
the multivariate density in (19). Second, we address cor-
ner error by adding it to Ec(Θk) to produce a measure
that accounts for both classification error within textured
regions and localization error at region boundaries. Thus,
we reduce corner error by incorporating it into the error
measure used in the filter design procedure, and we reduce
edge error by slightly modifying the Bayesian classifier in
a manner that does not significantly degrade within-region
classification. The use of a mixture distribution to reduce

edge error is described as part of the classifier design; the
method for reducing corner error is discussed below, since
it is included as part of the filter-design algorithm.

The corner error tends to increase as the spatial resolu-
tion of the filters becomes coarse, since small features such
as the sharp corner are blurred by the filter. This implies
that we should add a localization error term to (27) that
increases predicted segmentation error as the filtering be-
comes coarser or, equivalently, increases error as σgj and
σpj become larger.

Previous investigators have noted that accurate classifi-
cation within textured regions is achieved with larger spa-
tial operators, but that accurate localization of boundaries
is achieved with smaller spatial operators [4], [41]. For this
reason, Ec(Θk) in (27) is not sufficient for filter design. In
our experience, designing filters using Ec(Θk) alone as the
error measure results in filter designs with the largest pos-
sible σgj and σpj . To providing some counterbalance to the
classification error in (27), we add a measure of localization
error that favors smaller values of σgj and σpj .

Following the example in Fig 3, we propose the following
simple empirical measure of the localization error El(Θk)
in the 4 corners of the square:

El(Θk) ≈
1

k

k∑
γ=1

2N (σ2
pγ + σ2

gγ )

N2
, (28)

where the image dimensions areN×N , N is the number of
textures, and the term (σ2

pγ
+ σ2

gγ
) approximates the effec-

tive spatial localization of the combined prefilter and post-
filter in a single channel. The summation over k generates
an average corner error over thek channels. We include the
argument Θk in (28), since σpγ and σgγ depend on Θk. For
the particular case in Fig. 3, the measured error is 0.015
and the predicted error from (28) is 0.023. The error is
somewhat overstated in (28) compensate for the simplicity
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of the expression and other unattributed sources of local-
ization error. We could improve the accuracy of (28) for
the case in Fig. 3, but it is unclear that such refinement is
appropriate in light of the greatly simplifying construction
that underlies the formulation. It appears that the most
important characteristics of the expression is that El(Θk)
be representative of the magnitude of the error, and that
El(Θk) decreases as some weighted average of σgj and σpj
decreases. In either event, our results show the formulation
to generate effective filters.

The total error measure Et(Θk) for filter selection is then
the sum of the classification error Ec(Θk) and the localiza-
tion error El(Θk):

Et(Θk) = Ec(Θk) + El(Θk)

≈
1

N − 1

N−1∑
α=1

N∑
β=α+1

(PαPβ)1/2 e−B(tα,tβ,Θk)

+
1

k

k∑
γ=1

2(N )(σ2
gγ + σ2

pγ )

N2
(29)

where σgγ and σpγ are defined by Θk. The total error
Et(Θk) is then used as the basis for designing the Gabor
prefilters and Gaussian postfilters in the multichannel de-
sign. Although the localization error measure El(Θk) is ad-
mittedly simple, we have found it to produce effective filter
designs. This may be in part due to the fact that we tend
to use square textured regions in our experiments. Other
experimentation that led to El(Θk) also suggests that the
form of the localization error measure is not critical, but
that it should reasonably reflect the actual magnitude of
the localization error. Similarly, experimentation led us to
the modification of the classification error Ec(Θk) in (27)
discussed previously.

This completes the development of the multichannel
paradigm that establishes the relationships between the
predicted image-segmentation error Et(Θk) in (29), the fil-
ter parameters Θk in (18), the multivariate output statis-
tics pi(mp,Θk) in (19), and the power spectra of the sam-
ple textures Si(u, v) in (10).

IV. Filter Design Algorithm

Using the results of Section III, we now present the pro-
cedure for designing k Gabor prefilters and k Gaussian
postfilters to segmentN given textures. The design of the
set of Gabor prefilters and Gaussian postfilters is based on
the total error measure in (29). Our approach is to con-
struct an extensive set of candidate filter channels, then
choose the best multichannel design Θk using the total er-
ror from (29). Before describing the filter-design algorithm,
we briefly discuss the construction of the set of candidate
filter channels and the method for selecting the best filter
set.

A. Candidate Filters

The multichannel paradigm of Section III provides the
relationship between the predicted segmentation error and
the filter parameters for a given set of texture samples.
Using (18) we then define the optimum set of filter channels
Θopt as the set of filter channels that minimize the error
Et(Θk) in (29):

Θopt = min {Et(Θk)}
Θk

. (30)

It may be possible to find a closed-form solution for some
simple texture model and other simplifying assumptions.
However, we consider the more general case requiring a
search of the possible filter combinations Θk for Θopt.

We first construct a collection Ψ of individual candidate
filter channels, from which collection the set of k channels
will be constructed. As we showed earlier, it is not feasible
to consider all possible filter-channel combinations. Thus,
we choose the following reduced set of candidate filter chan-
nels Ψ that provides overlapping coverage of the frequency
plane for each possible σgj :

Ψ =
{

(uγη1 , vγη2 , σgγ , σpγν )
}

(31)

such that:

σgγ ∈ Σ

σpγν ∈ {λσgγ | λ ∈ Λ}
where:
λ ∈ Λ ,

(uγη1 , vγη2) ∈

{
( η1√

8π2σ2
gγ

, η2√
8π2σ2

gγ

)

}
;

where:
−0.5 ≤ uγη1 < 0.5 ,
0 ≤ vγη2 < 0.5 ,
η1, η2 ∈ {. . . ,−1, 0, 1, 2, . . .} .

with Σ being a set of candidate prefilter σgγ ’s, and Λ be-
ing a set constants determining candidate values of σpγν
relative to each value of σgγ . The subscripts γ, ν, η1, and
η2 are used to indicate the interdependencies of the pa-
rameters, since the possible values of σpγν and (uγη1 , vγη2)
depend on the value of σgγ .

Candidate center frequencies (uγη1 , vγη2) are restricted
to the closed right-half frequency plane at integer multi-
ples of 1/(8π2σ2

gγ
). The term 1/(8π2σ2

gγ
) represents the

displacement from center frequency at which the Gabor
prefilter frequency response (2) equals e−0.25 = 0.78. The
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separation in candidate frequencies is chosen to allow sig-
nificant overlap between adjacent filters, but not so small as
to unduly increase the number of candidate filters and com-
putation time. Although overlapping filters are members
of Ψ, any valid combination of parameters Θk is restricted
such that the Gabor prefilter passbands do not overlap at
the e−0.25 frequency-response point. In addition, center
frequencies within 1/(8π2σ2

gγ ) of the origin (u, v) = (0, 0)
are not considered, to ensure a proper bandpass image for
the Rician model and to reduce possible leakage effects due
to the finite attenuation characteristics of the filters admit-
ting low-frequency spurious energy [2], [3].

For each particular combination of σgγ and σpγν the col-
lection of filters in (31) simply represents an overlapping
tessalation of candidate Gabor prefilters in the frequency
half-plane. The candidate values of σgγ are typically varied
in octave steps, and the candidate values of σpγν are typ-
ically varied in multiples of 1.5 × σgγ . In our experience,
σgγ ∈ {2, 4, 8} and λ ∈ {1.5, 2} are typical. Larger values of
σgγ and λ appear to generate wider spatial filter responses
that are penalized by (28). Finally, we note that the al-
gorithm is not limited to octave scalings of σgγ and can
accommodate more general sets such as Σ = {2.2, 2.9, 4.1}.

While we have suggested selecting candidate σgγ ’s and
σpγν ’s that are scaled in some fashion, the algorithm is not
so limited and can accommodate more general sets such as
Σ = {2.2, 2.9, 4.1}.

B. Filter Selection

In constructing Ψ we reduced the number of candidate
filter channels while maintaining modestly overlapping cov-
erage of the frequency plane. Even so, the number of possi-
ble combinations of k channels remains prohibitive. To see
this, let ng be the number of elements in Σ and np be the
number of elements in Λ. If the number of center frequen-
cies is approximately N2/(σgγ )2 ≈ (N/8)2, and the num-
ber of prefilter-postfilter combinations isng×np, then there
are approximately (ng np) (N/8)2 individual filter channels
and approximately [(ng np) (N/8)2]k possible combinations
of k filters. With k = 5, N = 256, ng = 3, and np = 2,
there are ≈ 6000 individual filters and ≈ 8× 1018 possible
filter-channel combinations. Were it possible to evaluate
108 filter-channel combinations per second, this example
would require 2500 years. We, therefore, cannot directly
evaluate all filter channel combinations arising from Ψ.

The number of possible channel combinations leads us
to consider alternatives to a direct search for the best com-
bination of k filter channels. In the following, we use a
forward-sequential filter-selection method to find the best
k-channel design from the possible candidate filter-channel
combinations [33]. Although this is a suboptimal approach,
our experimental results yield effective filter designs.

In the forward-sequential method, the k-channel design
is achieved incrementally by adding one channel at a time.
The first filter channel selected is the best individual filter
θ1:

θ1 = θλ such that Et([θλ]) ≤ Et([θξ ]) ∀ θtξ ∈ Ψ . (32)

To proceed further, we first define the filter channel set at
iteration δ of the forward sequential algorithm as

Θδ =


θ1

θ2

...
θδ−1

θδ

 =


u1 v1 σgα1 σp1

u2 v2 σgα2 σp2

...
...

...
...

uδ−1 vδ−1 σgα(δ−1)
σp(δ−1)

uδ vδ σgαδ σpδ

 (33)

where δ ≤ k, and k is the number of desired filter channels
in the texture-segmentation system of Fig. 1.

Using (33), subsequent steps in the forward-sequential
filter design algorithm can then be written in a recursive
form. Filter parameters Θδ at the δth stage of the forward
sequential scheme are then defined in terms of the filter
parameters Θδ−1 at stage δ − 1:

Θδ =

[
Θδ−1

θδ

]
(34)

such that

Et

([
Θδ−1

θδ

])
≤ Et

([
Θδ−1

θξ

])
∀ θξ ∈ Ψ

where Θδ is a function of θδ, and where Θδ−1 is a fixed col-
umn vector established at step δ−1 of the forward sequen-
tial procedure. The forward sequential algorithm termi-
nates when k filter channels are designed, i.e., when δ = k.
The final filter design is then Θk. Although a single filter
channel θδ is added at each step in (34), the criteria for se-
lecting the added channel is based on effect of all δ channels
combined through the vector error measure Et(Θδ). Thus,
as each new channel is added the vector output statistics
of all δ channels are considered.

C. Design Algorithm

Combining the foregoing results, the procedure for de-
signing k filter channels comprised of k Gabor prefilters
and k Gaussian postfilters is:

Step 1. Construct a large collection Ψ of individual
candidate filter channels using (31). A typical set of
parameters would be Σ = {2, 4, 8} and Λ = {1.5, 2}.
For this Σ and Λ, the resulting possible combinations
of prefilter and postfilter sigmas would be (σgγ , σpγν ) ∈
{(2, 3), (2, 4), (4, 6), (4, 8), (8, 12), (8, 16)}.
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Step 2. Compute A2
i (u, v, σgj) and Ni(u, v, σgj) for each

σgj ∈ Σ and each texture ti using (12) and (13). This is
done for each sample texture ti(x, y) under consideration.
Pi(u, v, σgj) in (10) can be computed efficiently using a Fast
Fourier Transform [10], [15]. The result of this step is the
parameters A2

i (u, v, σgj) and Ni(u, v, σgj) at each discrete
frequency (u, v) for each σgj ∈ Σ and for each texture ti,
i = 1, 2, . . .,N .

Step 3. Using the results from step 2, find µ2
gi (u, v, σgj)

and s2
gi (u, v, σgj) using a numerical approximation of (15)

at each discrete frequency (u, v) for each σgj ∈ Σ and for
each texture ti, i = 1, 2, . . .,N .

Step 4. Find the best single filter-channel θ1 ∈ Ψ using
(32). The predicted segmentation error assiciated each fil-
ter is computed using (29) and the results from step 3 for
each set of filter parameters θ ∈ Ψ. (Note that (29) takes a
scalar form for a single filter channel, i.e., the multivariate
Gaussian in (19) becomes univariate.)

Step 5. Search for subsequent filters using the forward
sequential algorithm in (34), terminating when the desired
number of filter channels k is reached. Candidate filter-
channel combinations are restricted so that the passbands
of Gabor prefilters do not overlap at the e−0.25 frequency-
response point. The final filter design is then Θk. (Al-
ternatively, terminate the algorithm when the predicted
segmentation error Et(Θδ) reaches some desired level.)

V. Classifier and Postprocessing

In the previous section we presented the procedure for
finding the k-channel design Θk. In this section, we sum-
marize the design of the remaining classifier and post-
processing portions of the texture segmentation system of
Fig. 1. Although the focus of the present paper is the de-
sign of the filters Θk, the classifier and postprocessing por-
tions of the system are needed to generate the texture seg-
mentations that illustrate the performance of the k-channel
design Θk.

We use a straightforward Bayesian vector classifier, so
that we may observe the effectiveness of the filter design
rather than the effectiveness of a sophisticated classifier.
More elaborate methods can be used to generate the seg-
mented image from the k-dimensional vector output of the
k channels, but a simple classifier scheme more directly
illustrates the effectiveness of the filter design. Further,
our proposed Bayesian classifier is based on the statisti-
cal models (19) of the multichannel paradigm, and so the
segmentation results confirm the effectiveness of both the
filter design and the underlying multichannel paradigm.

After performing the classification, a final postprocessing
stage is employed as shown in Fig. 1. The postprocessing
resembles an “n-ary” morphological operation and is used
to remove residual error at boundaries between two dif-
ferent textures. These misclassifications appear to occur
when the feature vector passes through an intermediate
region in feature space that is classified as a third tex-
ture. The mechanisms causing such misclassifications are
outlined elsewhere for a simple one-dimensional case [15].
In our experiments, the problem seems to occur more fre-

quently when the number of filter channels k is less than
or equal to the number of textures being segmented.

In the following two sections, we briefly overview the
classifier and postprocessing. Further detail on the clas-
sifier and postprocessing can be found in [15] and the se-
quel [PAPER2].

A. Classifier

Given the multivariate Gaussian pdf pi(mp,Θk) in (19),
a Bayesian classifier could be implemented by simply
selecting the texture ti with the largest corresponding
pi(mp,Θk) for a given mp. Although we have found such
a classifier to perform well within textured regions, we have
observed localization error at texture boundaries; i.e., the
boundary is displaced from its true location [15]. We have
also observed that we can reduce this localization error by
slightly modifying the Bayesian classifier using a mixture
density. The use of a mixture density provides a fairly
simple means for shifting the multi-dimensional decision
surfaces of the classifier in a manner that tends to prevent
displacement of segmentation-boundary locations.

To illustrate the effect of the mixture density on classi-
fier performance, consider the one-dimensional case of two
Gaussian pdf’s depicted in Fig 4(a), corresponding to the
postfilter output statistics of a single filter channel. The
optimum classification threshold of 1.6 coincides with the
intersection of the two pdf’s. (A second threshold exists,
but does not contribute materially to the discussion.)

Now consider the optimum threshold for minimizing the
localization error at a boundary. For simplicity, consider
the one-dimensional step from amplitude 1 to amplitude 7
shown in Fig. 4(b). The two values on either side of the
step correspond to the mean values of the pdf’s in Fig. 4(a).
The result of filtering this step with a Gaussian lowpass
filter with σ = 5 is also shown. From the intersection of
the two solid curves in (b), the optimal threshold for the
filtered step from a localization standpoint, is the average
of the two amplitudes µ̄ = (µ1 + µ2)/2 = 4. The optimal
classification theshold from a classification standpoint is
shown as a dashed line in Fig. 4(b), and would result in an
error of 5 units in locating the step boundary. Thus, the
the optimal classification threshold of 1.6 differs from the
optimum localization threshold of 4 from.

The situation in Fig. 4(a) represents a well-separated
pair of classes with a low associated classification error. We
notice that movement of the classification threshold from
1.6 to 4 in Fig. 4 will not seriously degrade classification
error. In fact, for this particular example, the error would
change from ≈ 10−9 to ≈ 10−3. On the other hand, a 5
pixel boundary error as indicated in Fig. 4(b) corresponds
to a localization error of ≈ (5 · 4 · 100)/2562 = .03 for a
100 × 100 pixel square region in a 256 × 256 image. The
larger magnitude of the localization error suggests that it
is better to adjust the classification threshold to reduce
error at the boundary. Thus, the approach taken to reduce
the overall segmentation error is to modify the Bayesian
decision surfaces to reduce the localization error.

Thus, we propose to use a classifier based on a mixture-
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Fig. 4. Two Gaussian pdf’s corresponding to the output of a single filter channel for two different textures. (a) Plot of probability density
versus filter output amplitude; lower Gaussian pdf mean µ1 = 1, standard deviation σ1 = 0.1, upper pdf mean µ2 = 7 standard deviation
σ2 = 1, and optimum classification threshold = 1.6. (b) One-dimensional step edge and Gaussian-filtered step edge. The step edge is
shown centered at spatial coordinate 10 with an amplitude step from µ1 = 1 to µ2 = 7. The Gaussian lowpass filtered version of the step
is also shown for filter σ = 5. The optimal classification threshold of 1.6 from (a) is shown as a dashed line and results in a boundary
displacement of ≈ 5 from the actual step edge location. (c) Two mixture pdf’s formed by adding each of the pdf’s in (a) to a second
Gaussian pdf with the same mean, but with a standard deviation σmax = 1 that equals the largest standard deviation of the two original
pdf’s. The optimal classification threshold is now approximately 4 and greatly reduce the boundary displacement seen in (b).

density consisting of the average of two multivariate-
Gaussian densities. The mixture-density is readily im-
plemented for the present case of multivariate-Gaussian
classes. To formulate the mixture density, first select the
largest variances s2

pmaxj
on each feature axis j:

s2
pmaxj

≥ s2
pαj , α ∈ {1, 2, . . .N} , (35)

where each dimension, or feature axis, corresponds to the
output of a filter channel. Next, a covariance matrixCmax
is formed where the diagonal elements are the maximum
variances s2

pmaxj
, j = 1, 2, . . .k, and where all off-diagonal

elements are zero:

Cmax =


s2
pmax1

0 · · · 0

0 s2
pmax2

. . . 0
... 0

. . .
...

0
. . . · · · s2

pmaxk

 . (36)

The mixture density pmixi for texture ti is then defined
as

pmixi(mp) =
1

2
(pi(mp,Cmax) + pi(mp,Ci)), (37)

where pi(mp,Ci) is the original multivariate Gaussian pdf
from (19) and pi(mp,Cmax) is the multivariate Gaussian
formed by taking the maximum diagonal elements of all
the covariance matrices for the textures.

The proposed classifier for texture segmentation is then a
Bayesian classifier based on the mixture density (37) where
the output is assigned to the texture with the largest prob-
ability; i.e. c(x, y) = α such that

pmixα(mp(x, y)) ≥ pmixβ (mp(x, y)), ∀ β (38)

where c(x, y) is the classified image pixel at coordinate
(x, y), β ∈ {1, 2, . . .,N}, and pmixβ is the mixture density
for texture tβ given in (37).

B. Postprocessing

Even though the mixture-density classifier of the previ-
ous section reduces segmentation error in the vicinity of
texture boundaries, narrow regions in the classified im-
age c(x, y) are sometimes observed to be misclassified as
a third texture near the boundary between two textures.
These narrow misclassified regions seem to occur when the
feature vector makes a transition through feature space
from a vector charateristic of one texture, to a different
vector characteristic of the second texture at the bound-
ary. The mechanisms leading to these misclassifications
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are most readily illustrated in one dimension and are de-
scribed in further detail elsewhere [15]. Furthermore, these
misclassifications at boundaries are seen in results of other
segmentation methods [6], [42].

In practice, we find that these narrow misclassified re-
gions at texture boundaries can be removed using a two-
step postprocessing procedure that resembles a morpholog-
ical operation [43]. Although not strictly a morphological
operation, the postprocessing bears strong resemblance to
a morphological erosion. We are not aware of a similar
multi-class, or “n-ary”, morphology, but portions of our
procedure are similar to portions of boundary localization
work by Yann and Young [41].

To illustrate the misclassifications at region boundaries,
consider the one-dimensional situation in Fig. 5(a). In this
figure, there are 3 Gaussian pdf’s corresponding to the out-
put pdf’s of a single filter channel for 3 textures. Three cor-
responding mixture distributions as in (37) for k = 1 are
shown in Fig. 5(b) along with Bayesian thresholds. Ampli-
tudes from 0 to 1.7 are classified as texture 1, from 1.7 to
4.4 are classified as texture 2, and above 4.4 is classified as
texture 3.

Next, consider a one-dimensional version of a boundary
between texture 1 and texture 3, corresponding to an am-
plitude step from µ1 = 1 to µ3 = 7 as shown in Fig. ??.
Also shown is the step response through a lowpass Gaus-
sian filter with σ = 5, corresponding to the response of a
single filter channel. The two classification thresholds from
Fig. 5 are shown as dashed lines in Fig. ??. The classifier
then makes the correct assignment of texture 1 for points
more than 5 units to the left of the filtered step, and tex-
ture 3 for points more than 1 unit to the right of the edge.
However, points in the region from -5 to +1 units relative
to the edge are incorrectly classified as texture 2.

The problem of incorrect texture assignments at region
boundaries becomes considerably more complicated in the
multi-dimensional case of the k-channel system.

To remove these misclassifications at region boundaries,
we propose an approach similar to a morphological ap-
proach [43]. Although not strictly a morphological oper-
ation, the following procedure bears strong resemblance to
a morphological erosion. In the first step of our two-step
postprocessing procedure, pixels in c(x, y) whose neigh-
borhood consists entirely of one texture class are left un-
changed; otherwise, the pixel value is set to zero to indicate
it is no longer assigned to any class. We observe that the
magnitude of the boundary displacement is proportional
to the spatial extent of the filter responses. Thus we select
a neighborhood size ρ̄ that is proportional to an empirical
average width of the filter-channel responses:

ρ̄ =
1

k

k∑
j=1

√
σ2
gj + σ2

pj (39)

where σgj and σpj are the prefilter and postfilter parame-
ters for the kth channel. The result of performing this first
step resembles a morphological erosion operation.

In the second step, classified regions are propagated
back into the unassigned regions. Each unassigned pixel
is assigned to the most prevalent class within the 8-
neighborhood surrounding that pixel. This propogation af-
fects only unassigned pixels and ceases when all unassigned
pixels have been assigned to one of the N texture classes.
This second step resembles a morphological dilation opera-
tion, and the resultant image is the final segmented image
is(x, y) in Fig. 1.

Alternative classifier and postprocessing approaches are
the topic of ongoing research. However, the present meth-
ods serve to illustrate the effectiveness of the designed fil-
ters in a complete system while addressing issues that can
arise when a small number of filter channels is used relative
to the number of textures [?], [15].

VI. Results

The multichannel filter design algorithm, along with the
proposed postprocessing, have been tested using a wide
range of Brodatz and synthetic texture images [15], [44].
Two samples of our results are shown in Figs. 6 and 7. All
images are 256 × 256 pixel 8-bit gray-scale images. The
mean values of the textures were equalized so that segmen-
tation based on average gray scale was not possible.

The image shown in Fig. 6(a) is composed of five sam-
ples from the Brodatz texture album and resembles the
“Nat-5” image used by previous investigators to test tex-
ture segmentation methods [4], [44], [45]. The parameters
Σ = {3, 6, 12} and Λ = {1.5} were used to construct the
set of candidate filters Ψ. Fig. 6(b) is the result of a k = 2
channel segmentation, (c) is the result of a k = 4 chan-
nel segmentation, and (d) is the result of a k = 6 channel
segmentation. The measured segmentation error decreases
from 0.13 to 0.05 to 0.04 as the number of filter channels
increases from k = 2 to k = 6. Because the 4-channel
segmentation in (c) already has fairly low segmentation er-
ror, it is difficult to observe additional improvement the
6-channel segmentation in (d).

The parameters for the six channels used in Fig. 6(d) are

Θ6 =


−0.078 0.109 6 12
0.125 0.015 6 12

0 0.187 3 6
0.203 0 3 6
−0.265 0.234 3 6
0.312 0.187 3 4.5



where the first row corresponds to the first filter selected
in the forward-sequential algorithm, and so on. Thus, the
2-channel design of Fig. 6(b) uses the 2 channels defined by
the top 2 rows of Θ6, and the 4-channel design of Fig. 6(c)
uses the 4 channels defined by the top 4 rows of Θ6.

The first few filters in the design have larger values
of σgj and σpj that tend to provide good classification
within regions but poor spatial resolution. As the forward-
sequential algorithm proceeds, finer resolution filters are



14 HTTP://WWS2.UNCC.EDU/TPW/, February 9, 2007

2 4 6 8 10
Amplitude

0.5

1

1.5

2

 Probability 
 Density 

(a)

2 4 6 8 10
Amplitude

0.2

0.4

0.6

0.8

1

 Probability 
 Density 

(b)

0 5 10 15 20
 Distance 

2

4

6

8

10

 Spatial 
 Response 

(c)

Fig. 5. Three Gaussian pdf’s corresponding to the output of a single filter channel for three different textures. (a) Plot of probability density
versus filter output amplitude; leftmost pdf mean µ1 = 1, standard deviation σ1 = 0.2, center pdf mean µ2 = 3, standard deviation
σ2 = 0.5, upper pdf mean µ3 = 7 standard deviation σ3 = 2. (b) Mixture pdf’s showing classification thresholds at intersection of the
pdf’s with an amplitude of ≈ 1.7 and 4.4. (c) One dimensional step edge and Gaussian filtered step edge. The step edge is shown centered
at spatial coordinate 10 with an amplitude step from µ1 = 1 to µ3 = 7 corresponding to textures 1 and 3 in Fig. 5. The Gaussian lowpass
filtered version of the step is also shown for filter σ = 5. The optimal classification thresholds from Fig. 5 are shown as a dashed lines
and results in an erroneous classification of the as texture 2 over a distance extending from ≈ 5 to the left of the edge to ≈ 1 to the right
of the edges.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Results for Σ = {3,6,12}, Λ = {1.5}. (a) Input composite image “Nat-5,” clockwise from top left: d77 “cotton canvas,” d55 “straw
matting,” d17 “herringbone weave,” d84 “raffia,” d24 “pressed calf leather” in center. (b) 2 channel segmentation, error=0.13. (c) 4
channel segmentation, error=0.05. (d) 6 channel segmentation, error=0.04. (e) Filter frequencies (white squares) plotted on error map.
(f) Segmentation error for six-channel segmentation, misclassified pixels in black.
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added that tend to improve performance near boundaries.
The tendency to initially start with coarser filters reflects
the predominance of classification error due to the predom-
inance of within-region pixels relative to boundary pixels.
Later, the progression to finer filters reflects the dominance
of localization error near boundaries after the first few fil-
ters achieve effective within-region classification. For im-
ages comprised of many small textured regions with an ac-
companying large amount of texture boundary, some mod-
ification of the formulation of El(Θk) may be appropriate.

Predicted segmentation error Et is plotted as a function
of prefilter center frequency (u, v) in Fig. 6(e) for a single
filter channel at the largest possible prefilter sigma, σg =
12. The segmentation error is plotted as a gray scale, with
black indicating no error and white 100% error. The center
of Fig. 6(e) corresponds to (u, v) = (0, 0) cycles-per-pixel.
The u axis ranges from -.5 at the top to +.5 at the bottom,
and the v axis ranges from -.5 at the left to +.5 at the
right of the image. The largest value of σg is chosen for
the plot since it corresponds to the finest resolution in the
frequency domain.

The Gabor prefilter center frequencies from Θ6 are in-
dicated with white squares in Fig. 6(e). Although the plot
does not indicate the segmentation error for multiple chan-
nels, it is useful for showing the location of prefilter center
frequencies. In Fig. 6(e), several of the prefilter center fre-
quencies in the multichannel design are located in dark
areas corresponding to frequencies where a single Gabor
prefilter would exhibit low segmentation error.

The segmentation error for the 6-channel segmentation
in Fig. 6(d) is shown in Fig. 6(f) with black indicating
incorrectly classified pixels. Even though the mixture dis-
tribution was employed to reduce edge error, the error in
the vicinity of texture boundaries still appears to dominate
in Fig. 6(f). Also, the corner error in the upper right cor-
ner of Fig. 6(f) is similar to the appearance of the error in
Fig. 3.

Using only four Gabor filters, we achieve effective seg-
mentation results as shown in Fig. 6(d). By comparison,
Jain and Farrokhnia obtained similar segmentation results
using 13 filters selected from a predetermined filter bank
of 20 filters [4]. Randen and Husøy also achieved similar
results using 13 to 40 filters [45].

An eight-texture segmentation is shown in Fig. 7. A
sub-octave scaled set of σgj ’s with Σg = {2, 3, 4.5} were
used to compensate for the small texture regions in the
256×256 image. The two-filter segmentation in Fig. 7(b) is
remarkably effective considering the relatively small regions
in this 256×256 pixel image. The results of Fig. 7 approach
limits where the size of the morphological operators begin
to become significant relative to the sizes of the textured
regions. Nevertheless, the results do illustrate the potential
of the present methods.

The filter parameters used in the 8-texture segmentation
of Fig. 7(d) are
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Θδ =


0.187 0 4.5 6.75
0.171 0.125 4.5 6.75
−0.078 0.125 4.5 6.75
0.109 0 4.5 6.75
−0.296 0.25 2 3

0 0.187 3 4.5



Extensive results are presented in [15] that show simi-
larly effective segmentations for combinations of three to
eight textures. These results also show a tendency for de-
creased segmentation error as the number of filter channels
increases, and a tendency for increased segmentation error
as the number of textures increases.

Table I lists the measured segmentation error as the num-
ber of textures varies from two through eight and as the
number of filter channels varies from two to six for a vari-
ety of combinations of Brodatz and synthetic textures [15].
The table illustrates the effect of the number of textures
and the effect of the number of filter channels on segmen-
tation error. Note that the error stated in Table I, and the
foregoing figures, includes the error at the perimeter of the
256× 256 images. The perimeter is considered an equally
valid texture boundary, since cyclic convolution is used for
all filtering.

Two overall trends are apparent from the table. First,
the segmentation error tends to decrease as the number of
filters increases. This decrease is more noticeable as the
number of textures increases. Secondly, the segmentation
error tends to increase as the number of textures increases.
Both of these trends are expected in that the segmentation
should become less difficult as the number of features, or
filters, increases and as the number of classes, or textures,
decreases. Additional detail may be found in [15].

Experimental results that illustrate the complete sys-
tem of Fig. 1 with a particular focus on the effects of the
mixture-density classifier are shown in Fig. 8. The image
in Fig. 8(a) consists of three Brodatz textures: an out-
ermost region of uniform noise, a middle ring of “d15 -
straw”, and an innermost square region of “d77 - cotton
canvas” [44]. Fig. 8(b) shows the segmentation error (mis-
classified pixels are the white regions) in is(x, y) when the
mixture density is not used; i.e., with Bayesian classifica-
tion based on (19). Fig. 8(c) shows the segmentation error
when the mixture density of (37) is used for classification.
Morphological postprocessing was not altered in Figs. 8(b)
and (c), so that only the effect of modifying the classifier is
observed. The improvement near texture boundaries that
is apparent in comparing Figs. 8(b) and (c) is confirmed by
the reduction of total measured error from 10% to 4%.

The results in Fig. 9 illustrate the effects of the mor-
phological postprocessing on misclassifications at texture
boundaries. The image in Fig. 9(a) consists of an out-
ermost region of lowpass noise, a middle ring of “d21 -
french canvas”, and an innermost square region of “d55 -
straw matting”. Fig. 9(b) is the classifier output c(x, y) us-
ing a mixture-density. A prominent band of misclassified

TABLE I

Measured segmentation error.

Number of Number of Channels
Textures 2 3 4 5 6

3 .07 .05 .04 .04 .03
3 .05 .05 .05 .05 .03
3 .05 .04 .04 .04 .04
3 .03 .03 .03 .03 .03

4 .08 .06 .06 .05 .04
4 .10 .06 .05 .04 .04
4 .08 .07 .03 .04 .04

5 .11 .09 .07 .06 .06
5 .17 .07 .06 .04 .04
5 .12 .08 .05 .06 .05
5 .07 .06 .05 .04 .04
5 .06 .05 .05 .05 .04
5 .13 .06 .05 .04 .04
5 .25 .08 .06 .06 .06
5 .29 .23 .20 .18 .18

8 .09 .07 .08 .08 .08
8 .45 .34 .23 .23 .19

pixels is seen along the entire boundary between the outer-
most texture (lowpass noise) and the middle ring of texture
(d21). The misclassification appears to be caused by the
trajectory of the feature-vector as it makes the transition
between the two textures. During the transition between
the two outermost textures, the vector appears to travel
through a region in feature space that is assigned to the
third texture (the texture at the center of the image). Fi-
nally, morphological postprocessing is applied to Fig. 9(b),
resulting in the final segmented image is(x, y) shown in
Fig. 9(c). The mixture-density classifier was not altered in
Figs. 9(b) and (c), so that only the effect of adding mor-
phological postprocessing is observed. Comparing Fig. 9(b)
and (c), the misclassified pixels at the texture boundary are
mitigated by morphological postprocessing.

VII. Discussion

The multichannel paradigm and accompanying filter-
design algorithm constitute a comprehensive treatment of
the design of multiple Gabor filters to segment multiple
textures. The multichannel paradigm provides relation-
ships between predicted segmentation errorEt(Θk), Gabor
prefilter parameters (u, v, σgj), Gaussian postfilter param-
eters σpj , multivariate output statistics pi(mp,Θk), and
sample-texture power spectra Si(u, v). Using these rela-
tionships, we presented an algorithm for the design of a k-
channel texture-segmentation system comprised ofk Gabor
prefilters and k Gaussian postfilters. In addition, we used
the predicted multivariate output statistics as the basis for
the design of a vector classifiefor the texture-segmentation
system.
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Results for Σ = {2,3, 4.5}, Λ = {1.5}. (a) Input composite 256 × 256 image, d77, d84, d55, d17, d24, d21, d57, d68. (b) 2 channel
segmentation, error=0.09. (c) 4 channel segmentation, error=0.08. (d) 6 channel segmentation, error=0.08. (e) Filter frequencies (white
squares) plotted on error map. (f) Segmentation error for six-channel segmentation, misclassified pixels in black.

(a) (b) (c)

Fig. 8. Effects of mixture distribution. (a) Input composite image, outer border = uniform noise, middle ring = d15 “straw,” center
square = d77 “cotton canvas.” (b) Segmentation error for (a) without mixture distribution, black = misclassified pixel, error=0.13. (c)
Segmentation error for (a) with mixture distribution, error=0.03.

Our experimental results confirm the efficacy of the fil-
ters designed with our algorithm. Further, our results con-
firm the multichannel paradigm, since both the designed
filters and the Bayesian classifier are based on the mul-
tichannel paradigm. Results were presented that showed
effective segmentations for 5 textures using only 4 filter

channels and for 8 textures using 4 filter channels.

At some point, the number of filters in the multichan-
nel design will approach the number of filters employed in
a filter-decomposition approach or will approach complete
coverage of the spatial-frequency plane. As the number of
required filters increases, it may be better to use a filter-
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(a) (b) (c)

Fig. 9. Reduction of missclassifications near texture-boundaries using morphological postprocessing. (a) Input composite image, outer border
= lowpass noise, middle ring = d21 “french canvas,” center square = d55 “straw matting.” (b) Output of mixture-density classifier c(x, y)
showing pronounced misclassification error at boundary between the outermost region of lowpass noise texture and the middle region of
d21 texture. Note that the boundary is misclassified as the third (innermost) texture, d55. (c) Final segmentation after morphological
postprocessing to remove localization error at texture boundaries, measured segmentation error = 0.05. Only two filter channels were
used for the results in (b) and (c) with parameters ( uj , vj , σgj , σpj ) = (0,0.36,3,4.8) and (-0.17,0.41,3,4.8).

decomposition approach. Nevertheless, it may be advanta-
geous to use the filters from the multichannel design algo-
rithm in place of an ad hoc filter bank, since the designed
filters are tailored to the segmentation problem.

There are several refinements that could be investigated
to address difficult segmentation problems. First, the co-
variance matricesCi in (??) can be estimated directly from
the sample textures once the filters are chosen. The off-
diagonal elements in Ci which were assumed zero for the
purpose of designing the filter would then be replaced by
values estimated from the sample textures and, therefore, a
more accurate estimate of the multivariate Gaussian statis-
tics would be formed.

The predominance of error at texture boundaries sug-
gests that the primary limitation of the proposed method
is localization error at texture boundaries. Boundary errors
would also contribute to increased error for larger numbers
of textures, since the total length of boundary increases as
the number of textures increases. In situations where resid-
ual error appears to be within textured regions, an alterna-
tive approach would be to use a non-parametric classifier to
attempt to handle outliers or secondary modes that could
be causing misclassifications within textured regions.

Other approaches to the boundary localization issue in-
clude local inhibition and relaxation methods. Malik and
Perona proposed local inhibitory connections for the sup-
pression of spurious responses [29], [46]. Also, relaxation
labeling methods described by Higgins et al. may offer
some improvement [47].

The mixture-distribution modification to the global clas-
sifier appears to be an effective method for reducing local-
ization error. Although spatially-local classification meth-
ods such as local inhibition are likely to be the best method
to reduce the localization error, it may be advantageous to
use the mixture-distribution modification prior to employ-
ing spatially-local classification methods. Thus, localiza-

tion error can be reduced on a global basis before applying
local inhibition, relaxation labeling, or other spatially-local
classification techniques.

Previous researchers have investigated the development
of optimal edge detectors in terms of a combined error mea-
sure including edge detection and edge localization [48]–[
50]. However, there does not seem to be a similar treatment
in the literature for the design of optimal vector classifiers
for minimization of a combined localization and classifica-
tion error measure. Bovik briefly treated the localization
problem for a simple scalar decision process based on the
filter with the maximum output level [3]. However, he did
not combine a classification error with the localization er-
ror in his analysis. The methods presented here seem to
be closely related to robust estimation methods; however,
directly applicable works addressing localization and clas-
sification tradeoffs in multidimensional feature spaces have
not been found [51].

Finally, the “n-ary erosion”, “n-ary dilation”, and “n-
ary open” operations were quite useful in the treatment
of the classifier output. Such operations do not appear
to be in the morphology literature, and do not appear to
be related to gray-scale morphology. The method seems
to have an interesting parallel with local-competition ap-
proaches, in that the behavior at boundaries is similar to a
local “winner-take-all” competition. In the case of the “ero-
sion” operation, surrounding regions obliterate intervening
regions smaller than the “erosion structuring element.” We
are not aware of a similar multi-class, or “n-ary”, morphol-
ogy, but portions of our procedure are similar to portions
of boundary localization work by Yann and Young [41].

The previous discussion has focused on the design of Ga-
bor filters. The methods, however, should be applicable to
other types of filters. This may be accomplished by replac-
ing the kernel G(u, v) in (10) by a different kernel K(u, v).
The only caveat is that necessary properties ofG(u, v) used
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in the foregoing derivations set restrictions on K(u, v). In
particular, K(u, v) should satisfy [K(u, v)]2 = |K(u, v)|2 as
used in (10), and K(u, v) should be non-negative to assure
that the spectral estimate given by (10) is non-negative.
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