newHeaaviside0 $=1$
$u(t)=\operatorname{heaviside}(t)$
pulse(t) =
heaviside $\left(t+\frac{1}{2}\right)$ - heaviside $\left(t-\frac{1}{2}\right)$
triangle(t$)=$
$-\left(\right.$ heaviside $\left.\left(t-\frac{1}{2}\right)-\operatorname{heaviside}\left(t+\frac{1}{2}\right)\right)(2 t-4 t \operatorname{heaviside}(t)+1)$
==== READ THESE INSTRUCTIONS FOR YOUR REPORT ===
First, this should be opened in "Maatlab Live Editor" to export a pdf.
NOTE: print the pdf in "Hide Code" format (see button on right of maatlab)
Then, make any needed maatlab changes per any questions below.
You must re-run the script for changes to take effect.
Dont forget to add the names of the group members as shown below.
Answer all numbered questions below, Q1, Q2, etc.
Select the "Hide Code" format (see button on right of maatlab) before pdf export.
In live editor, use Save::export-as-pdf to print the report
DO A FINAL CHECK of your pdf before turning it in.

ECGR 4124 Computer Project: Linear Convolution
Names: Nolan Bushnell, Federico Faggin, Gordon E. Moore

parameters and definitions:
$x(t)=$
4 heaviside $(t-1)-4$ heaviside $\left(t-\frac{3}{2}\right)$
$h(t)=$
2 heaviside $\left(t-\frac{3}{2}\right)-2$ heaviside $(t-3)$
$y(t)=$
$\left\{\begin{array}{c}0 \\ \text { heaviside }\left(t-\frac{5}{2}\right)(8 t-20)-\operatorname{heaviside}(t-3)(8 t-24)-\operatorname{heaviside}(t-4)(8 t-32)+\operatorname{heaviside}(t-\end{array}\right.$

Continuous-time convolution: $\mathbf{x}(\mathbf{t})$

Fig. 1. Continuous-time convolution.

QQ
Q1. Change the simulation for $h(t)$ to be a pulse with amplitude $=3$
beginning at $t=1 \mathrm{~s}$ and ending at $\mathrm{t}=3 \mathrm{~s}$. Do not change $\mathrm{x}(\mathrm{t})$.
(Fig. 1 simulation should change accordingly.)

QQQ
Q2. After making the changes in Q1,
observe Fig. 1, and use the cursor tool to measure the
maximum amplitude of $y(t)$.
Also compute the theoretical maximum of $y(t)$ by calculating the area of $x(t)$ multiplied by $h(t)$, when $x(t)$ is centered in the middle of $h(t)$.

Hint: multiply the functions point by point at each time t,
then take the area

Answer: measured peak of $y(t)=$?? ?
Answer: calculated area = ???
parameters and definitions:
$x 2(t)=$
$-10\left(\right.$ heaviside $\left.\left(t-\frac{1}{4}\right)-\operatorname{heaviside}\left(t-\frac{3}{4}\right)\right)\left(4\right.$ heaviside $\left.\left(t-\frac{1}{2}\right)(2 t-1)-4 t+1\right)$
$\mathrm{x} 2(\mathrm{t})=4$ heaviside $(t)-4$ heaviside $(t-1)$
h2 $(\mathrm{t})=$ heaviside $(t-2)-$ heaviside $(t-4)$
$y 2(t)=$
$\left\{\begin{array}{l}0\end{array}\right.$
heaviside $(t-2)(4 t-8)-\operatorname{heaviside}(t-3)(4 t-12)-\operatorname{heaviside}(t-4)(4 t-16)+$ heaviside $(t-5)$

Fig. 2. Continuous-time convolution.

QQ
Q3. Change the simulation for $h 2(\mathrm{t})$ to be a pulse with amplitude $=2$ beginning at $t=1 \mathrm{~s}$ and ending at $\mathrm{t}=2 \mathrm{~s}$.
(Fig. 2 simulation should change accordingly.)

QQQ
Q4. After making the changes in Q3,
observe Fig. 2, and use the cursor tool to measure the
maximum amplitude of $y 2(t)$. Be sure to measure the peak.
Also compute the theoretical maximum of $\mathrm{y} 2(\mathrm{t})$ by calculating the area of $x 2(t)$ multiplied by $h 2(t)$, when $x 2(t)$ is centered in the middle of h2 (t).

Hint: multiply the functions point by point at each time t,
then take the area

Answer: measured peak of $y 2(t)=$?? ?
Answer: calculated area = ???

PART 2: Discrete-Time Linear Convolution ==================================10=

0	0	0	0	4	4	0	0	0	0	0	0	$0 \cdots$
	2	3	2	1	0	0	0	0	0	0	0	$0 \cdots$
	0	0	0	4	12	20	20	12	4	0	0	$0 \cdots$
$\begin{aligned} & \mathrm{nn}= 1 \times 20 \\ & 0 \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	$12 \cdots$

Fig. 3. Discrete-time convolution.

QQ
Q5. Change the simulation, setting

(Fig. 3 simulation should change accordingly.)

QQ
Q6. After making the changes in Q5,
observe Fig. 3, and use the cursor tool to measure the
maximum amplitude of $y n$ (denoted $y[n]$ in the plot).
Also compute the theoretical maximum of $y[n]$ by calculating the sum of $x[n]$ multiplied by $h[n]$, when $x[n]$ is centered in the middle of $h[n]$.

Hint: multiply the functions point by point at each point n,
then take the sum.

Answer: measured peak of $y[n]=$? ? ?
Answer: calculated sum =???

Fig. 4. Discrete-time convolution.

QQ
Q7. Change the simulation, setting
$x n=\left[\begin{array}{lllllllllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \end{array}\right]$
$h n=\left[\begin{array}{llllllllllllllllllll}3 & 3 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(Fig. 4 simulation should change accordingly.)

QQQ
Q8. After making the changes in Q7,
observe Fig. 4, and use the cursor tool to measure the
maximum amplitude of yn 2 (denoted $\mathrm{y} 2[\mathrm{n}]$ in the plot).
Also compute the theoretical maximum of $\mathrm{y} 2[\mathrm{n}]$ by calculating the sum of $x 2[\mathrm{n}]$ multiplied by $\mathrm{h} 2[\mathrm{n}]$, when $\mathrm{x} 2[\mathrm{n}]$ is centered in the middle of hn2.

Hint: multiply the functions point by point at each point n, then take the sum.

Answer: measured peak of $\mathrm{yn}=$???
Answer: calculated sum = ???

Cformula $=\mathrm{AiAr}+\mathrm{AiBii}+\mathrm{ArBr}(1-\mathrm{i})$
$A=2.0000+3.0000 i$
$B=5.0000+7.0000 i$
Cmult $=-11.0000+29.0000 i$
Cformula $=16+11 \mathrm{i}$
QQQ
Q9.
Observe the values of Cmult and Cformula above, where Cformula
is the explicit formula for complex multiplication WITH ERRORS.
Correct the errors in the formula for Cformula, such that
Cmult $=$ Cformula above. Note: $A * B$ is NOT the answer.

QQQ
Q10.
What famous 1971 integrated circuit has Federico Faggin initials,
and what was the function this digital circuit?
Hint: see www.intel4004.com

Answer: ???

