
Question 1	5 pts
If the net force on a 3 kg mass is 2 N, the acceleration in $\mbox{m/s}^{2}$ is	
o 2/3	
○ 3/2	
o 6	
None Above	
Question 2	5 pts
If the initial kinetic energy of a 2 kg mass is 5 J, and a constant force of 3 N is applie over a distance of 5 M, the final kinetic energy in J is $\frac{1}{2}$	d
o 30	
o 20	
None Above	
o 25	
Question 3	5 pts
The volume of $1/2$ mole of ideal gas at a pressure of 100 kPa and at 300 K is 12.45	L.
· True	
o False	
Question 4	5 pts
A sound pressure level of 0.02 Pa rms, would correspond to a level L_p in dB $_{SPL}$ unit	s of
o 30	
○ 40	
○ 60	
None Above	

	Question 1	5 pts			
	The Laplace poles of an undamped spring+mass mechanical oscillator (without any damper) are unstable.				
	○ True				
	o False				
	Question 2	5 pts			
	\				
	In a spring+mass+damper system under the force of gravity as in our handouts, with m=0.1 kg, k=0.4 N/m, r=0.01 N/(m/s), and initial conditions z(0)=-3 m, and v(0)=0, the natural frequency of the system is ω_0 =				
	o 2 rad/s				
	o 1/2 rad/s				
	o 4 rad/s				
	o 1/4 rad/s				
	None Above				
	Question 3	5 pts			
	In a spring+mass+damper system under the force of gravity as in our handouts, with m=20 kg, n=5 m/N, r=0.4 N/(m/s), and initial conditions $z(0)$ =-3 m, and $v(0)$ =0, the Q of the system is Q=				
	o 10				
	o 5				
	o 4				
	None Above				

Question 4 5 pts

For the transient response of the spring+mass+damper shown above, the position of the static equilibrium point is most nearly at z=

-2.5 m

0 m

○ -1 m

None Above

Question 1	5 pts
The mechanical impedance in N/(m/s) of a 3 kg mass at a	a frequency of 4 Hz is
None above	
o -j56.5	
o j94.2	
o j75.4	
Question 2	5 pts
The formula for the Q of a series-connected mechanical for a parallel-connected mechanical oscillator.	oscillator is always the same as
o True	
o False	
At an air density of 1.2 kg per cubic meter, a 0.1 liter volu	5 pt: ume of air would correspond to a
mechanical mass of	
○ 1.2 g	
O None above	
○ 0.12 g	
○ 1.2 kg	
Question 4	5 pt:
A 0.1 m long piston of area 0.001 m ² filled with gas hav is equivalent to a spring with compliance n=	ring compressibility $\kappa=10^{-5}$ Pa $^-$
○ 10 ⁻³ m/N	
○ 0.1 m/M	

An electric transmission line with 200 pF/m capacitance phase velocity v_p =	and ooo mit/in inductance has a
○ 126 x 10 ⁶ m/s	
○ 105 x 10 ⁶ m/s	
None above	
○ 91 x 10 ⁶ m/s	
Question 2	5 pts
An electric transmission line with 100 pF/m capacitance a characteristic impedance in ohms of Z_0 =	and 200 nH/m inductance has a
o 51	
o 45	
4563	
o 63	5 pts
63None above	nass density m _R = 80 kg/m and
 63 None above Question 3 A spring+mass mechanical transmission line with linear mass mechanical transmission linear mass mechanic	nass density m _R = 80 kg/m and
 63 None above Question 3 A spring+mass mechanical transmission line with linear mecompliance-per-meter of n _R =2 N has a characteristic impossion line with linear mecompliance of n _R =2 N has a characteristic impossion.	nass density m _R = 80 kg/m and
 63 None above Question 3 A spring+mass mechanical transmission line with linear mecompliance-per-meter of n _R =2 N has a characteristic imposed in the property of the property	nass density m _R = 80 kg/m and

Question 1

Question 4

5 pts

5 pts

A 0.6 m long spring with 4 N tension has a mass of 10 kg and has a zero-force length of 0.1 m. The group velocity in m/s of a pulse on this spring is

Question 1	5 pts
If a fluid has an acoustic phase velocity of v_p =100 m/s, then at a frequency of 10 H acoustic wavelength in meters is λ =	lz, the
o 1000	
○ 1	
○ 10	
None above	
	If a fluid has an acoustic phase velocity of v_p =100 m/s, then at a frequency of 10 H acoustic wavelength in meters is λ = 1000 1 100

Question 2	5 pts
At 277 $^{\rm O}$ K, the density of carbon dioxide is 2 kg/m $^{\rm 3}$ with γ = 1.3 at a pressure of kPa. Under these conditions, the compressibility in Pa $^{\rm -1}$ is κ =	100
None above	
$\circ 3.2 \times 10^{-4}$	
\circ 1.31 x 10 ⁻⁶	
○ 7.7 x 10 ⁻⁶	

Question 3 5 pts

Ethyl alcohol is a fluid with compressibility of $\kappa = 1.1 \times 10^{-9} \text{ Pa}^{-1}$ and a density of 790 kg/m³ at 300 °K and at a pressure of 100 kPa. Under these conditions, the acoustic group velocity in m/s of acoustic waves in a 2 cm diameter pipe filled with this fluid is vg =

711
1073
None above
853

Question 4 5 pts

The gradient of a pressure plane wave $p\left(x,y,z,t\right)=e^{-j2y}e^{j100t}$ equals $\left(egin{array}{c}0\\-j2e^{-j2y}e^{j100t}\\0\end{array}
ight).$

- True
- False