NOTE: The exam will have many more questions than these examples.
5 Points Each, Circle the best answer
Assume a fluid with mass density of $\rho=2000 \mathrm{~kg} / \mathrm{m}^{3}$ and compressibility of $\kappa=10^{-6} \mathrm{~Pa}^{-1}$ for the questions below.

1. The phase velocity of a 1 kHz acoustic wave in the fluid in m / s is $\mathrm{v}_{\mathrm{p}}=$
a) 200
b) 500
c) 1000
d) 2000
e) none above

$$
N_{p}=\frac{1}{\sqrt{\rho_{R} K_{R}}}=\frac{1}{\sqrt{(2000)\left(10^{-6}\right)}}=22.4 \mathrm{~m} / \mathrm{s}
$$

2. The wavelength of a 1 kHz acoustic wave in the fluid is $\lambda=$
a) 0.01 m
b) 0.5 m
c) 1 m
d) 2 m
e) none above

$$
\lambda=\frac{v_{p}}{s}=\frac{22.4}{1000}=0.0224 \mathrm{~m}
$$

3. The wavenumber, or spatial frequency, of a 1 kHz acoustic wave in the fluid in $\mathrm{rad} / \mathrm{m}$ is $\beta=$
a) 0.12
b) 2.2
c) 4.3
d) 12.6
e) none above

$$
\beta=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.0224}=281 \frac{5 \mathrm{Ad}}{m}
$$

4. The characteristic impedance of a 1 kHz acoustic wave in the fluid in $\mathrm{N} \mathrm{s} / \mathrm{m}^{3}$ is $\mathrm{Z}_{0}=$
a) 2000
b) 5000
c) 8000
d) 10^{4}
e) none above

$$
Z_{0}=\sqrt{\frac{k_{k}}{k_{R}}}=\sqrt{\frac{2000}{10^{-6}}}=44,700 \mathrm{Ns} / \mathrm{m}^{3}
$$

5. A valid pressure plane wave in the fluid would be $p(x, y, z, t)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\top} e^{-j 12.6 z}$
$\begin{array}{ll}\text { a) True } & \text { b) False }\end{array}$
$\omega=2000 \pi$

$$
\begin{aligned}
& 50 \\
& f=1000
\end{aligned}
$$

so
6. For a mechanical mass+spring+dashpot parallel mechanical oscillator with parameters mass $1(A$ $m=2 \mathrm{~kg}$, compliance $\mathrm{n}=0.125 \mathrm{~m} / \mathrm{N}$, and damper mechanical resistance $\mathrm{r}=0.5 \mathrm{~N} /(\mathrm{m} / \mathrm{s})$, the of the system is $\mathrm{Q}=$
a a) $1 / 4$
b) $1 / 2$
c) 1
(d) 8
e) none above

$$
Q=\frac{\sqrt{m / n}}{r}=\frac{\sqrt{\frac{2}{m}}}{m}=8
$$

7. For the scalar pressure field $p(x, y, z, t)=2 y^{3} z$ the gradient is $\nabla p=$

a) $\left[0 \quad 6 y^{2} z \quad 2 y^{3}\right]^{\top}$
b) $\left[\begin{array}{lll}3 x^{3} z & 0 & y^{3}\end{array}\right]^{\top}$
c) $\left[y^{3} z \quad x y^{2} z\right]^{\top}$
d) $\left[\begin{array}{lll}0 & 3 y^{2} z & y^{3}\end{array}\right]^{\top}$
e) none above

$$
V \rho=\left[\begin{array}{l}
2 d x y \\
2 \partial z
\end{array}\right] 2 y^{3} z=\left[\begin{array}{c}
6 y^{2} q \\
2 y^{3}
\end{array}\right]
$$

8. For the two vectors $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{lll}2 & 2 & 2\end{array}\right]^{\top}$ and $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]^{\top}$ the inner product, or dot product, is
a) $[2-46]^{\top}$
b) 10
c) 20
d) 32
e) none above

$$
\left[\begin{array}{lll}
2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]=2 \cdot 3+2 \cdot 2+2 \cdot 1=12
$$

Assume a mechanical wave mass+spring transmission line with mass density of $m_{R}=2$ kg / m and compliance-per-unit-length of $\mathbf{n}_{\mathrm{R}}=0.5 \mathrm{~N}^{-1}$ for the questions below.
9. The phase velocity of a 1 kHz mechanical wave in the systemin m / s is $\mathrm{v}_{\mathrm{p}}=$
a) 1
b) 4
c) 40
d) 400
e) none above

$$
N_{p}=\frac{1}{\sqrt{m_{R} n_{R}}}=\frac{1}{\sqrt{(2)\left(\frac{1}{2}\right)}}=1 \mathrm{~m} / \mathrm{s} .
$$

10. The wavelength of a 1 kHz mechanical wave in the transmission line is $\lambda=$
a) 0.001 m
b) 0.04 m
c) 0.1 m
d) 0.2 m
e) none above

$$
\lambda=\frac{N r_{p}}{f}=\frac{1}{1000}=0.001 \mathrm{~m}
$$

Assume a 2 m longpiston of $0.001 \mathrm{~m}^{2}$ area is filled with fluid with mass density of $\rho=4$ $\mathrm{kg} / \mathrm{m}^{3}$ and compressibility of $\mathrm{k}=10^{-6} \mathrm{~Pa}^{-1}$ for the questions below.
11. The piston is equivalent to a spring with compliance in m / N of $\mathrm{n}=$
a) 0.001
b) 0.004 m
c) 0.04
d) 0.02
e) none above

$$
n \Leftrightarrow \frac{\mathrm{Kl}}{A}=\frac{\left(10^{6}\right)(2)}{0,001}=0.002 \mathrm{~m} / \mathbb{N}
$$

