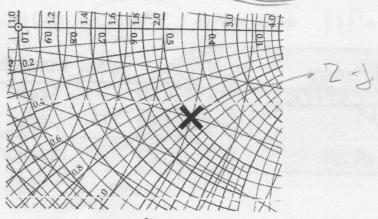
(do)

20 Odipolos disi.

ECGR3122 Elec	ECGR3122 Electromagnetic Waves Exam2			Spring 2019	
Name:	agth of a 1 CHz plane.	rava la variga			
Last 4 digits of s	student Number:	Copyrigi	nt 2020 by Tho	omas Paul Weldon	
Open book (text CALCULATOR, DO ALL WORK Do NOT use the	ntil told to do so, you may you have all pages before or Weldon or both), 2 she no other electronic device IN THE SPACE GIVEN, back of the pages, do NO answers should be within	starting eets front/back n es you may brir DO NOT LEAVI OT turn in extra s	otes, 1 Smith chart ng a compass and n E THE ROOM DUR sheets of work/pape	with markings, BASIC uler ING EXAM	
ACADEMIC INTI Students have the Integrity. This cod		observe the requir	ements of The UNCO	Code of Student Academic	
F{} denotes Four	s column vector of coordier transform {or Fourier and second, fidence of the coordinate of the coordin	series, as implie	od in problem} F ⁻¹ {} on Hz	denotes inverse Fourier	
Useful constants $e \approx 2.72$ $1/e \approx 0.37$ $ln(2) \approx 0.69$ $log_{10}(2) \approx 0.30$ $log_{10}(10) \approx 1.0$ $log_{10}(e) \approx 0.43$	$\pi \approx 3$. $\sqrt{2} \approx 1$ $\ln(4)$ $\log_{10}(\log_{10}(1))$		1920	39 40	
$\hat{A} \cdot \hat{B} = \hat{B} \cdot \hat{A}$	$\hat{\mathbf{A}} \cdot (\hat{\mathbf{B}} + \hat{\mathbf{C}}) = \hat{\mathbf{A}} \cdot \hat{\mathbf{B}} + \hat{\mathbf{A}} \cdot \hat{\mathbf{C}}$	C A · A =	$ \mathbf{A} ^2$		
	$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A}$ $0.5 \cos(\mathbf{A} - \mathbf{B}) + 0.5 \cos(\mathbf{A} + \mathbf{C})$ $0.6 \cos(\mathbf{A} - \mathbf{B}) + 0.6 \cos(\mathbf{A} + \mathbf{C})$	+ B) sin(A)	cos(B) = 0.5 sin(A)	- B) + 0.5 sin(A + B) - B) - 0.5 cos(A + B)	
$\delta(t)\leftrightarrow 1$	$\Pi(t/ au)$ \leftarrow	$\rightarrow \tau \cdot sinc(\pi f \tau)$	$\Delta\left(\frac{t}{\tau}\right) \leftrightarrow$	$\frac{\tau}{2} \cdot sinc^2(\pi f \tau/2)$	
$e^{j2\pi f_0t} \leftrightarrow \delta(f-$	f_0) $e^{-at}u(t)$	$\Rightarrow \frac{1}{a+j2\pi f}$	$e^{-a t } \leftrightarrow$	$\frac{2a}{a^2 + (2\pi f)^2}$	
$e^{-t^2/(2\sigma^2)} \leftrightarrow \sigma\sqrt{2}$	$2\pi e^{-2(\sigma\pi f)^2} $ 1	$\leftrightarrow \delta(f)$	Sg	$gn(t) \leftrightarrow \frac{1}{j\pi f}$	
$\cos\left(2\pi f_0 t\right) \leftrightarrow$	$0.5(\delta(f+f_0)+\delta(f-f$	sin (0)		$(\delta(f+f_0)-\delta(f-f_0))$	

 $2B \operatorname{sinc}(2\pi Bt) \leftrightarrow \Pi(f/(2B))$


 $B \, sinc^2(\pi B t) \leftrightarrow \Delta(f/(2B))$

- 1. The wavelength of a 1 GHz plane wave in vacuum is $\lambda = c/f = 3 \times 10^8 / 0^9$
 - a) 0.3 m

- b) 0.5 m c) 2 m d) 3 m e) none above
- 2. The length of time for a 1 GHz plane wave in vacuum to travel a distance of 1 meter is

 - a) $0.33 \,\mu s$ b) $3.3 \,\mu s$ c) 1 ns d) $3.3 \,n s$ e) none above $t = \frac{1}{3 \times 10^8}$ $= \frac{1}{3 \times 10^8}$ =
- 3. In a plane wave, the direction of the E-field is orthogonal to the H-field at all points in space with non-zero fields.
 - a) True
- b) False
- 4. The direction of propagation of a plane wave in vacuum with phasor $E=[1\ 0\ 0]^T$ e^{-j23z} is Re(E)=Re(0) et vt - tt -
 - 5. In a backward wave, the group velocity is in the same direction as the phase velocity
 - a) True
- Apposite
- 6. Given the normalized Smith chart of measured antenna impedance at 100 MHz in a Z_0 =50 ohm system, with the antenna impedance marked by the "x" below, the antenna impedance (not normalized) in ohms is
 - a) 100 + j50 b) 50 j100 c) 100 j20

- d) 100 j50 /
- e) none above

7. For a time-varying field in vacuum with oblique incidence at the boundary with a conductor, the tangential E-field at the boundary must equal zero

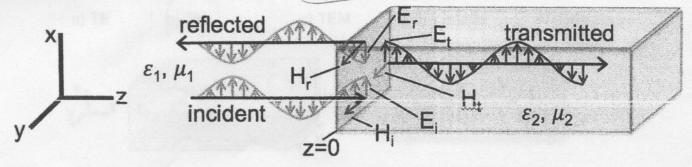
a) True b) False

8. For a 1 GHz plane wave in glass having σ =0, μ = μ 0, ε =3 ε 0, the propagation constant γ =

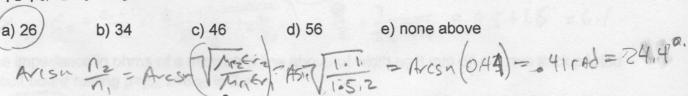
a) 33 + j43 b) j36 c) j47 d) 63 e) none above $\sqrt{2} + \sqrt{4} = -\frac{1}{3} + \sqrt{4} = -\frac{1}{3} + \sqrt{2} = -\frac{1}{3} = -\frac{1$

9. For a 1 GHz plane wave propagating in glass having σ =0, μ = μ 0, ε =3 ε 0, the intrinsic impedance in ohms is η =

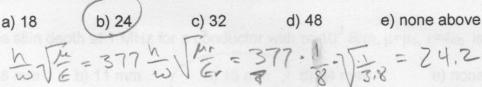
a) 121 + j53 b) 169 c) 189 d) 218 e) none above $m = \sqrt{\frac{2}{6}} = \sqrt{\frac{2}{6}} = \sqrt{\frac{2}{6}} = 377 \sqrt{\frac{2}{6}} = 3777 \sqrt{\frac{2}{3}} = 218$


10. For a 1 GHz plane wave propagating in glass having σ =0, μ = μ 0, ε =3 ε 0, the wavelength is λ =

a) 0.13 m b) 0.17 m c) 0.55 m d) 0.77 m e) none above


11. For a 1 GHz plane wave in vacuum with normal incidence into glass having $\mu=\mu_0$, $\varepsilon=3\varepsilon_0$, the reflection coefficient is $\Gamma=$

12. As shown below, for a 2 GHz plane wave in vacuum with normal incidence into glass having $\mu_2 = \mu_0$, $\varepsilon_2 = 3\varepsilon_0$, the ratio of the transmitted E-field E_t to the incident E-field E_i is E_t/E_i =


a) -0.55 b) 0.55 c) 0.62 d) 0.73 e) none above $|+||^2|-0.27$

- 13. The plane wave E-field with phasor $\mathbf{E} = \begin{bmatrix} 0 & 2e^{-j\pi} & 0 \end{bmatrix}^T e^{-j50} \omega^z$ has linear polarization.
- a) True b) False
 - 14. The critical angle in degrees for total internal reflection for two media with $\mu_1=\mu_0$, $\varepsilon_1=5.2\varepsilon_0$ and $\mu_2=\mu_0$, $\varepsilon_2=\varepsilon_0$ is $\theta_C=$

- 15. The average power density in W/m² equals 0.5 Re{E×H*} where E-field phasor E is in V/m, and the H-field phasor H is in A/m.
 - a) True b) False
- 16. The TEM impedance in ohms of a parallel-plate line of width w=8 mm on a 1 mm thick printed circuit board having $\mu=\mu_0$, $\varepsilon=3.8\varepsilon_0$, is $Z_0=$

- 17. The TE₁ cutoff frequency of a parallel-plate waveguide of width w=8 mm on a 1 mm thick printed circuit board having $\mu=\mu_0$, $\varepsilon=3.8\varepsilon_0$, is f_C =
 - a) 19 GHz b) 38 Ghz c) 44 GHz d) 76 GHz e) none above

- 18. For the waveguide below where the H-field only contains components along the y axis, the mode is

5 Points Each, <u>Circle the best answer</u>
May > 1
19. The effective relative permittivity of a microstrip line above of width w=3 mm on a 1 mm thick printed circuit board having $\mu=\mu_0$, $\varepsilon=8\varepsilon_0$, is $\varepsilon_{\text{eff}}=$
a) 2.1 b) 3.9 c) 4.8 d) 6.1 e) none above
a) 2.1 b) 3.9 c) 4.8 d) 6.1 e) none above $6 = \frac{6+1}{2} + \frac{6+1}{2} + \frac{6+1}{2} + \frac{7}{2} + \frac{7}{2\sqrt{1+4}} = 4.5 + 1.6 = 6.1$
20. The impedance in ohms of a microstrip line above of width w=3 mm on a 1 mm thick printed circuit board having $\mu=\mu_0$, $\varepsilon=8\varepsilon_0$, is $Z_0=$
28 b) 35 c) 73 d) 89 e) none above 28 = 377 21. For the following propagation constants γ in microstrip using various materials, choose the
value of γ that has the <u>least</u> loss. a) 2 + j5 b) 2 + j9 c) 4 + j5 d) j7
22. The skin depth at 1 MHz for a conductor with $\sigma=10^3$ S/m, $\mu=\mu_0$, $\varepsilon=4\varepsilon_0$ is $\delta=$
a) 8 mm b) 11 mm c) 16 mm d) 24 mm e) none above
a) 1.9 GHz b) 3.2 GHz c) 4.6 GHz d) 7.5 GHz e) none above
24. For a 1 GHz plane wave in vacuum with normal incidence into a material with reflection coefficient Γ = 0.5, the ratio of reflected power P_r to incident power P_i is P_r/P_i =
a) -3 dB (b) -6 dB (c) -9 dB (d) -12 dB (e) none above
17= Vr Pred 1/2 1/2 1/2 2 1/2

25. The gain of an ideal (η =1) parabolic dish antenna with 1 meter diameter at 3.6 Ghz is

a) 21.1 dB b) 31.5 dB c) 39.5 dB d) 52.2 dB e) none above 7= = 0.083 A== TT = TT (=)=0.79 3=4TTAe/T=4TT (0.79) (0.083)

26. The free-space propagation loss between two dipole antennas dBi at a distance of 6 km at 2 GHz is

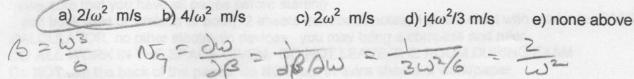
a) 99 dB b) 110 dB c) 133 dB d) 156 dB e) none above $\frac{2}{8} = 0.15$ $\frac{1}{2} = -\frac{10}{6.5}$ $\frac{1}{2$ a) 99 dB b) 110 dB c) 133 dB d) 156 dB

at 2 GHz is

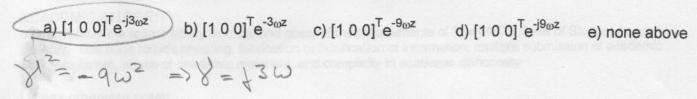
a) 99 dB b) 110 dB (c) 133 dB d) 156 dB = 16.5 + 120,2-4-5 132.7 e) none above

28. If the propagation loss between antennas is 100 dB, and transmitter power is 1 watt, and the receiver antenna impedance is 50 ohms, the received signal rms voltage is

a) 320 nV b) 22 μ V c) 71 μ V d) 9.1 mV $P_{TX} = 10^{10} \text{W} = V_{TMS}^{2}$ $V_{TMS} = \sqrt{50 \cdot 10^{10}} = 70.7 \mu\text{V}$ e) none above


29. The Wheeler-Chu limit bandwidth of an electrically-small antenna with radius 5 mm at 1 GHz is

b) 1.1 MHz a) 710 kHz c) 1.8 MHz d) 11 MHz e) none above


30. Using a ring inductance $L_R \approx 3.5 \text{ r} \mu_0$, calculate the resonant frequency of the split ring resonator below, where the radius is r=0.005 m and the gap capacitance is C_g=0.25 pF

b) 2.1 GHz c) 2.9 GHz d) 8.3 GHz a) 1.6 GHz e) none above N= 1.5 = 5115 = 5.16HZ

31. In a plane wave with propagation constant $\gamma = 2 + j\omega^3/6$, the group velocity is v_q =

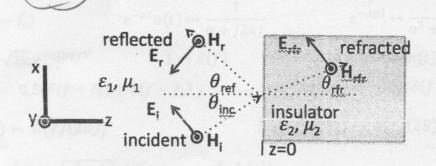
32. A valid solution of the Helmholtz equation $\nabla^2 \mathbf{E} = -9\omega^2 \mathbf{E}$ is $\mathbf{E} = -9\omega^2 \mathbf{E}$

33. For a plane wave propagating in a right-handed metamaterial having σ =0, μ = μ 0, ϵ =0.25 ϵ 0, the phase velocity in terms of the speed of light (c=3x10⁸) is v_p =

a) $0.25 \,c$ b) $0.5 \,c$ c) $0.71 \,c$ d) $2 \,c$ e) none above

34. For the boundary below between two media with σ_1 =0, μ_1 = μ_0 , ε_1 = ε_0 and σ_2 =0, μ_2 = μ_0 , ε_2 =4 ε_0 and incident plane wave with θ_{inc} =30 degrees, the tangential E-field is zero at the boundary.

a) True b) False


b) 30

a) 15

35. For the boundary below between two media with σ_1 =0, μ_1 = μ_0 , ε_1 = ε_0 and σ_2 =0, μ_2 = μ_0 , ε_2 =4 ε_0 and an incident plane wave with θ_{inc} = 30 degrees, the reflection angle in degrees is θ_{ref} =

e) none above

c) 45 d) 60

