Exam1

(!) This is a preview of the draft version of the quiz

This exam is open book, open notes, you may use any online/hardback textbooks you like. You may use calculators and matlab, but may not collaborate with other people. All multiple choice answers should be within 5% of correct value.

Unless stated otherwise in the question, use 3 decimal precision in fill-in-the blank questions, such as "132.312" or "58.023" for example. Do not give numerical fill-in-the-blank answers as fractions such as "4/5," give answer as decimal " 0.800 " form. Also, canvas might force you to enter a leading " 0 " for numbers less than one, such as " 0.113 " and entries such as ".113" might be disallowed.

As always, make sure that you are in a location with good internet connectivity during the exam. It is not a bad idea to practice
\qquad

Preview

(!) Correct answers are hidden.
Score for this quiz: 150 out of 150
Submitted Apr 19 at 12:19pm
This attempt took 4 minutes.

For the continuous-time system above with $H(s)=1 /(s+2)$ and $G(s)=5 /(s+3)$, the closed-loop transfer function is $G_{C L}(s)=C(s) / R(s)=$
(-) $\frac{5 s+10}{s^{2}+5 s+11}$

$$
==\frac{G(s)}{1+G(s) H(s)}=\frac{5(1+3)}{1+5 /((k+3) \cdot(s+2))}
$$

None above

$$
=\frac{5(s+2)}{(s+3)(s+2)+5}=\frac{5 s+10}{s^{2}+5 s+11}
$$

$\frac{5(s+10)}{s^{2}+5 s+12}$
$\frac{5 s+2}{s^{2}+6 s+11}$$\frac{5(s+10)}{(s+5)(s+11)}$

Question 2

If $X(s)=\frac{3}{s(s+4)}$ then, $\mathrm{x}(\mathrm{t})=$
$3\left(1-e^{-4 t}\right) u(t)$
Laplace table

$$
\frac{a}{s(s+a)} \Rightarrow\left(1-e^{-a t}\right) u(t)
$$$4\left(1-e^{-3 t}\right) u(t) / 3$None above

$$
\frac{3}{4} \frac{4}{5(s+a)} \Rightarrow \frac{3}{4}\left(1-e^{-4 t}\right) a(-1)
$$

Question 3

For the LTI system above with impulse response $h[n]$, the z-transform of $h[n]$ is $H(z)=Y(z) / X(z)=$$(3 z+4) /(z-2)$$(4 z+3) /(z+2)$
$(2 z+1) /(3 z+4)$None above$(2 z+1) /(4 z-3)$

Question 4

The z-transform of $x[n]=(3 / 4)^{n-1} u[n-1]$ is$4 z /(3 z-9 / 4) ;|z|>3 / 4$None above

$$
+
$$

$$
1 /(z-3 / 4) ;|z|>3 / 4
$$

(ㄱ) $1 /(z-3 / 4) ;|z|>3 / 4$

$$
0.75 z /(z-3 / 4) ;|z|>3 / 4
$$

$0.75 z /(z-3 / 4) ;|z|>3 / 4$0.75/(z-4/3); $|z|>4 / 3$

$$
\begin{aligned}
\left(\frac{3}{4}\right)^{n} u[n] & \Rightarrow \frac{z}{z-3 / 4} \\
\text { telaypror } & \Rightarrow \frac{z^{-1} \cdot z}{z-3 / 4}
\end{aligned}
$$

Question 5

In a 10 sample/s system with $X^{*}(s)=1 /\left(5+e^{s / 5}\left\{\begin{array}{l}\text { the } z \text {-transform (ign } \\ 5 / 10=Z\end{array}\right.\right.$$\frac{1}{z^{2}+5}$
none above

$$
=\frac{1}{5+\left(e^{5 / 10}\right)^{2}} \Rightarrow \frac{1}{5+z^{2}}
$$

$\frac{z^{2}}{z^{2}+0.5}$
$\frac{5 z}{z^{2}+5}$
$\frac{1}{z^{-2}+5}$

Question 7

A continuous-time signal $x(t)$ is sampled with period $T_{0}=0.1 \mathrm{~s}$ to create discrete-time signal $x[n]$, and the z-transform of $\mathrm{x}[\mathrm{n}]$ is $X(z)=\frac{2}{3 z-1} ; \quad|z|>\frac{1}{3}$. Then, the starred transform of $\mathrm{x}(\mathrm{t})$ is $X^{*}(s)=$

$\frac{2 e^{-s / 10}}{3 e^{-s / 10}-e^{-1 / 10}}$

None above
$\frac{2}{3 e^{-s / 10-1}}$

Question 8

In the system above, let $T=0.1 \mathrm{~s}, \mathrm{D}(\mathrm{z})=1-1 / \mathrm{z}, \mathrm{G}_{\mathrm{P}}(\mathrm{s})=4 /(\mathrm{s}+4), \mathrm{G}_{\mathrm{H} 0}(\mathrm{~s})=\left(1-\mathrm{e}^{-\mathrm{sT}}\right) / \mathrm{s}$.
For the system above, the pulse transfer function is $G(z)=C(z) / E(z)=$

Question 9

For the system above, $\mathrm{D}(\mathrm{z})=1-0.5 z^{-1}, \mathrm{G}_{\mathrm{P}}(\mathrm{s})=3 / \mathrm{s}, \mathrm{G}_{\mathrm{H}}(\mathrm{s})=\left(1+\mathrm{e}^{-\mathrm{sTo}}\right) / \mathrm{s}, \mathrm{T}_{0}=1 / 10$
In the open-loop system above, the starred transform of the output is $\mathrm{C}^{*}(\mathrm{~s})=$

Question 10

$G_{Q}(s)=\frac{15}{\frac{1-e^{-s T}}{s}}=\frac{15(s)}{s}\left(1-e^{-s t}\right)$ $G_{C}(z)=\frac{15 z}{z-1} \frac{z-1}{z}=15$

In the system above, let:
$H(s)=1 / 10, G_{c}(s)=G_{p}(s) G_{n}(s), G_{p}(s)=15, G_{H 0}(s)=\left(1-e^{-s} / / s . \quad \frac{C(z)}{12(z)}=\frac{G_{c}(z)}{1+\sigma_{c} H(z)}=\frac{15}{1+15 / 10}=\frac{150}{25}\right.$
The closed-loop continuous-time step response is

The causal LTI system with closed-loop pulse transfer function $G_{C L}(z)$ having the pole/zero plot above is BIBO stable.

Question 13

For a system with variable gain $\mathrm{K}>0$, the closed-loop response $G_{C L}(z)=\frac{C(z)}{R(z)}=\frac{\frac{K}{2 z+4}}{1-\frac{K}{2 z+4}}$ is stable for

$$
\begin{gathered}
2=\frac{k}{2 z+4-K} \\
2<K<K<6 \\
2+2-K / 2
\end{gathered}
$$

none of the answers

Question 14

Real Polers. $z=\frac{K}{2}-2$ Pole @1 for $z=6$, @-1 $\int_{z=2}$ 5 / 5 pts

$$
\begin{gathered}
\frac{1}{3\left(\frac{1+\omega T / 2}{1-\omega T / 2}\right)-4}=\frac{1-\omega / 10}{3+\frac{3 \omega}{10}-4+4 \frac{\omega}{10}} \\
=\frac{10-\omega}{30+3 \omega-40+4 \omega}
\end{gathered}
$$

$\frac{4-3 w}{21 w-4}$

Question 16
For a lag compensator with $D(w)=4 \frac{1+\frac{w}{16}}{1+\frac{w}{2}}$ in a system with sample period $T_{s}=1 / 4 \mathrm{~s}$, the
corresponding discrete-time compensator is $\mathrm{D}(\mathrm{z})=$
$\underbrace{(10 z-2) /(z+3)}$
Question 17

Question 18

For the digital system above with sample period $T o=0.001 \mathrm{~s}$, controllable form state-variable matrix $A=$

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -1.7 & 0.5
\end{array}\right]
$$

none of the answers

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0.9 & 2.8 & 2.8
\end{array}\right]
$$

$\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.5 & 1.7 & -2\end{array}\right]$
$\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.5 & -1.7 & 2\end{array}\right]$

For the digital system above with sample period $\mathrm{To}=0.001 \mathrm{~s}$, the controllability matrix is

$$
\left[\begin{array}{ccc}
0 & 0 & 0.5 \\
0 & 1 & 1 \\
1 & 0.9 & 1.9
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 2 \\
1 & 2 & 2.3
\end{array}\right]
$$

$\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2.3\end{array}\right]$
$\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1.7 & -1.1\end{array}\right]$
$\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ -2.9 & -2.8 & -0.9\end{array}\right]$
none of the answers

For the digital system above with sample period $\mathrm{To}=0.001 \mathrm{~s}$, the system is controllable.

Question 21
Question 22

-0.005 F

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For uncompensated open-loop gain $G_{o L}(w)$ shown above, using Bode plot analysis the gain margin to within $+/-3 \mathrm{~dB}$ is

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For open-loop gain $G_{O L}(w)$ combined with compensator $D_{1}(w)$ shown above, the phase margin of $G_{o L}(w) D_{1}(w)$ to within $+/-10$ degrees is

90 degrees

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag
compensators). For open-loop gain $G_{o L}(w)$ combined with compensator $D_{1}(w)$ shown above, the gain margin of $\mathrm{G}_{\mathrm{oL}}(\mathrm{w}) \mathrm{D}_{1}(\mathrm{w})$ to within $+/-4 \mathrm{~dB}$ is

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For open-loop gain $G_{o L}(w)$, comparing the bandwidth using the two compensators, the unity-gain bandwidth of $G_{O L}(w) D_{1}(w)$ is larger than $G_{O L}(w) D_{2}(w)$.

True

 In the system above, let
$D(z)=2-1 / z,-1(s)=1 / 5, \quad G_{C}(s)=G_{P}(s) G_{H 0}(s), \quad G_{P}(s)=20, G_{H 0}(s)=\left(1-e^{-s T}\right) / s$.
For the system above, the closed-loop pulse transfer function is $\mathrm{G}_{\mathrm{CL}}(\mathrm{z})=\mathrm{C}(\mathrm{z}) / \mathrm{R}(\mathrm{z})=$

$$
10(2+1 / z)\left(1+\mathrm{e}^{-T o}\right) /(4 z-9)
$$

For the system above:
In the system above, let
$D(z)=2-1 / z, H(s)=1 / 5, \quad G_{C}(s)=G_{p}(s) G_{H 0}(s), \quad G_{p}(s)=20, G_{H 0}(s)=\left(1-e^{-s T}\right) / s$.
For the system above, the pole of the closed-loop pulse transfer function $\mathbf{G}_{\mathrm{CL}}(\mathbf{z})$ is at
-0.25
0.63

$$
\begin{aligned}
& \left.G_{c}(s)=20 \frac{\left(1, e^{-c t}\right.}{5}\right)=\frac{20}{5}\left(1-e^{-s T}\right) \\
& G c(z)=\frac{\frac{20 z}{z-1}}{G^{\prime}(z)} \frac{z-1}{z}=20 \\
& G_{c h}(z)=\frac{\widehat{G}^{\prime}(z)}{1+D(z) G_{c}(z) G_{c h}(z)}=\frac{\frac{2 z-1}{z} \cdot 20}{1+\frac{2 z-1}{z} \cdot 20-\frac{1}{5}} \\
& =\frac{20\{(z z-1)}{z+(z z-1) 4}=\frac{20(2 z-1)}{9 z-4}
\end{aligned}
$$

For the system above, the closed loop pulse transfer function is $G_{C L}(z)=C(z) / R(z)=$

none of the answers

$$
\sin =\frac{82 \pi}{(2-1)^{2}}+\frac{2 \pi}{2}=\frac{8}{2}
$$

$$
G_{c}(z)=\frac{D(z) G_{c}(z)}{1-D(z) G_{c} H(z)}=\frac{\frac{z-y_{2}}{z}=\frac{8 / 5}{z-1}}{1+\frac{z-y_{c}}{z} \frac{8 / 5}{z-1} \frac{1}{z}}
$$

$$
=\frac{8 z-4}{5 z^{2}-5 z+4 z-2}=\frac{8 z-4}{-72-7-2}
$$

Question 30

$$
\frac{D t}{5 t^{2}-z-r_{5 / 5 \mathrm{pls}}}
$$

For the system above: $D(z)=1-0.5 z^{-1}, G_{p}(s)=8 / s, G_{H 0}(s)=\left(1+e^{-s T o}\right) / s, H(s)=1 / 2, T_{0}=1 / 5$
For the system above, the poles of the closed-loop pulse transfer function $\mathbf{G}_{\mathbf{c L}}(\mathbf{z})$ are at
0.32 and 0.65
-0.53and 0.21

