Published Preview

Exam1

(1) This is a preview of the draft version of the quiz

This exam is open book, open notes, you may use any online/hardback textbooks you like. You may use calculators and matlab, but may not collaborate with other people. All multiple choice answers should be within 5% of correct value.

Unless stated otherwise in the question, use 3 decimal precision in fill-in-the blank questions, such as "132.312" or "58.023" for example. Do not give numerical fill-in-the-blank answers as fractions such as "4/5," give answer as decimal "0.800" form. Also, canvas might force you to enter a leading "0" for numbers less than one, such as "0.113" and entries such as ".113" might be disallowed.

As always, make sure that you are in a location with good internet connectivity during the exam. It is not a bad idea to practice table size the same and the sure regular internet access. Make sure your browser is compatible with convert

Quiz Type	Graded Quiz
Points	150
Assignment Group	Exams
Shuffle Answers	Yes
Time Limit	75 Minutes
Multiple Attempts	No
View Responses	No
One Question at a Time	No
Require Respondus LockDown Browser	No
Required to View Quiz Results	No
Webcam Required	No

For	Available from	Until
Everyone else	Apr 20 at 1pm	Apr 20 at 2:15pm
1 student	Apr 20 at 1pm	Apr 20 at 3:30pm
	For Everyone else 1 student	ForAvailable fromEveryone elseApr 20 at 1pm1 studentApr 20 at 1pm

Preview

() Correct answers are hidden.

Score for this quiz: **150** out of 150 Submitted Apr 19 at 12:19pm This attempt took 4 minutes.

Question 1	5 / 5 pts

Question 3	5 / 5 pts

For the LTI system above with impulse response h[n], the z-transform of h[n] is H(z)=Y(z)/X(z)=

(32	z+4)/(z-2)			
(42	z+3)/(z+2)			
(22	z+1)/(3z+4)			
O No	one above			
(22	z+1)/(4z-3)			

Question 4	5 / 5 pts
Γhe z-transform of x[n]=(3/4) ⁿ⁻¹ u[n-1] is	
○ 4z/(3z-9/4); z >3/4	7
None above	$(n) \rightarrow -$
1/(z-3/4); z >3/4	- 1 - 1
0.75z/(z-3/4); z >3/4	ANProp=>Z.
0.75/(z-4/3); z >4/3	7

C	Question 6		5 / 5 pts	
Ir	n a in a 5 sample/s syste	em with X(s)=4/s ² , the starred transform is $X^*(s) =$		
	$\bigcirc \frac{0.2 \ e^{s/5}}{(e^{s/5}-4)^2}$	$\chi(t) = 4tu(t)$ $\Rightarrow \chi(n) = 4nTu(n)$		
	onone above $\frac{e^{s/5}}{e^{s/5}-1}$	$X(z) = qT \frac{z}{(z-1)^2}$	(le	
($ \begin{array}{c} $	$\chi^{*}(s) = 4T \frac{e^{ST}}{(e^{sT}-1)^2} =$	4 e 5 (es/5.1)	~)

Question 7		5 / 5 pts
A continuous-time signal x(t) is sampled w the z-transform of x[n] is $X(z) = \frac{2}{3z-1}$;	with period T ₀ =0.1 s to create discrete-tin $ z > \frac{1}{3}$. Then, the starred transform	ne signal x[n], and of x(t) is $X^*(s) =$
$\bigcirc \frac{2}{3e^{s/10}-1}$	2	2
$\bigcirc \frac{2e^{s/10}}{3-e^{s/10}}$	32-11 Z=est	3e -
$\bigcirc \frac{2e^{-s/10}}{3e^{-s/10}-e^{-1/10}}$		
None above		
$\bigcirc \frac{2}{3e^{-s/10}-1}$		

Exam1: 202110-Spring 2021-ECGR-4090-Y01:ECGR-4090-Y02:ECGR-5090-Y01:ECGR-5090-Y02_Combined

False

Question 16	5 / 5 pts
For a lag compensator with $D(w) = 4 \frac{1 + \frac{w}{16}}{1 + \frac{w}{2}}$ in a system with sample period T _s =1/4 s, the corresponding discrete-time compensator is D(z) =	1=1/4
$(10z - 2)/(z + 3) \qquad \qquad)(z) = (a \circ \psi p) (1 + b \circ (z) + z)$	$1-\omega_0T/2/(1+\omega_T/2)$
onone of the answers $\eta \omega_0 (1 - W \rho T/z) z - ($	1. WT/2/(121) T/
(8z + 4)/(6z - 3)	(+ up/2)
$(6z+2)/(5z-3)$ $a_{o}=4$ $w_{p}=$	2

$\bigcirc \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.5 & 1.7 & -2 \end{bmatrix}$		
$ \bigcirc \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.5 & -1.7 & 2 \end{bmatrix} $		

Question 20	5 / 5 pts

False

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For **uncompensated** open-loop gain $G_{OL}(w)$ shown above, using Bode plot analysis the gain margin to within +/-3 dB is

0 dB		
○ 10 dB		
on none of the answers		
© 20 dB		

Question 24	5 / 5 pts

Exam1: 202110-Spring 2021-ECGR-4090-Y01:ECGR-4090-Y02:ECGR-5090-Y01:ECGR-5090-Y02_Combined

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag

Exam1: 202110-Spring 2021-ECGR-4090-Y01:ECGR-4090-Y02:ECGR-5090-Y01:ECGR-5090-Y02_Combined

compensators). For open-loop gain $G_{OL}(w)$ combined with compensator $D_1(w)$ shown above, the gain margin of $G_{OL}(w)D_1(w)$ to within +/-4 dB is

False

4/19/2021	Exam1: 202110-Spring 2021-ECGR-4090-Y01:ECGR-4090-Y02:ECGR-5090-Y01:ECGR-5090-Y02_Combined		
	In the system above, let		
$D(z)=2-1/z$, $H(s)=1/5$, $G_C(s)=G_P(s)G_{H0}(s)$, $G_P(s)=20$, $G_{H0}(s)=(1-e^{-sT})/s$.			
($G_{C}(s): Z_{D}(1 - \overline{C}^{s})$		
= 22-1	$0 \ 10(2+1/z)(1+e^{-T_0})/(4z-9)$		
t	○ 20(2-e ^{-5To})/(z-e ^{-5To})		
	None above $G(z)$ $Zz^{-1}.20$		
	2(z+20)/(z+8/9) (2(z+20)/(z+8/9) (2(z+20)/(z+2)/(z+2)/(z+2)/(z+2) (2(z+20)/(z+2)		
(20(2z-1)/(9z-4) Zo(ZZ-1) ZO		
	(20z+1)/(z ² +z+1/4)		

Question 28	5 / 5 pts
$r(t), R(s) + \underbrace{\sum_{i=0}^{n} e(t), E(s)}_{T_0} \xrightarrow{E^*(s), E(z)}_{T_0} \underbrace{D(z)}_{D(z)} \xrightarrow{Y(z)}_{G_c(s) = G_p(s)G_{\mu_0}(s)}_{=G_p(s)(1-e^{-sT_0})/s} \xrightarrow{c(t), C(s)}_{G_c(s) = G_p(s)(1-e^{-sT_0})/s} \xrightarrow{c(t), C(s)}_{H(s)}$	
For the system above:	
In the system above, let	
$D(z)=2-1/z$, $H(s)=1/5$, $G_{C}(s)=G_{P}(s)G_{H0}(s)$, $G_{P}(s)=20$, $G_{H0}(s)=(1-e^{-sT})/s$.	
For the system above, the pole of the $\ closed$ -loop pulse transfer function $G_{CL}(z)$ is a	t
~ -0.25 $7 = 4$ ~ 44	
0.63	
 none of the answers 0.44 	

Quiz Score: 150 out of 150