Exam1

(1) This is a preview of the published version of the quiz

Started: Jan 9 at 6:23pm

Quiz Instructions

This exam is open book, open notes, you may use any online/hardback textbooks you like. You may use calculators and matlab, but may not collaborate with other people. All multiple choice answers should be within 5% of correct value.

Unless stated otherwise in the question, use 3 decimal precision in fill-in-the blank questions, such as "132.312" or "58.023" for example. Do not give numerical fill-in-the-blank answers as fractions such as "4/5," give answer as decimal "0.800" form. Also, canvas might force you to enter a leading "0" for numbers less than one, such as "0.113" and entries such as ".113" might be disallowed.

As always, make sure that you are in a location with good internet connectivity during the exam. It is not a bad idea to practice tethering through your cellphone as a backup to your regular internet access. Make sure your browser is compatible with canvas.

I may monitor my email <u>tpweldon@uncc.edu (mailto:tpweldon@uncc.edu)</u> during the exam/quiz, in case of some major urgent issue during the exam. Because the exam/quiz is online, most issues will have to wait until after the exam/quiz is completed, so do not expect any reply to any email, and **proceed on** with the exam/quiz even if you send an email.

$\bigcirc \ \frac{5(s+10)}{(s+5)(s+11)}$		
$\bigcirc \ rac{5s+2}{s^2+6s+11}$		
$\bigcirc \frac{5(s+10)}{s^2+5s+12}$		
\bigcirc None above		
$\bigcirc \frac{5s+10}{s^2+5s+11}$		

https://uncc.instructure.com/courses/146892/quizzes/279611/take?preview=1

1	Quiz. Exami
For the LTI system H(z)=Y(z)/X(z)=	above with impulse response h[n], the z-transform of h[n] is
○ (2z+1)/(4z-3)	
○ None above	
○ (4z+3)/(z+2)	
○ (3z+4)/(z-2)	
(2z+1)/(3z+4)	

Question 4	5 pts
The z-transform of x[n]=(3/4) ⁿ⁻¹ u[n-1] is	
○ 0.75/(z-4/3); z >4/3	
○ 4z/(3z-9/4); z >3/4	
○ 1/(z-3/4); z >3/4	
○ None above	
○ 0.75z/(z-3/4); z >3/4	

Question 5	5 pts
In a 10 sample/s system with $X^*(s) = 1/(5 + e^{s/5})$ the z-transform (ignoring RO X(z) =	C) is
○ none above	
0	

Question 7	5 pts
A continuous-time signal x(t) is sampled with period T ₀ =0.1 s to create discressignal x[n], and the z-transform of x[n] is $X(z) = \frac{2}{3z-1}$; $ z > \frac{1}{3}$. Then, starred transform of x(t) is $X^*(s) =$	
$\bigcirc \frac{2}{3e^{-s/10}-1}$	
0	

Quiz: Exam1

In the open-loop system above, the starred transform of the output is C*(s)=

$$\begin{array}{c} \left(\frac{4}{5}\right) \frac{e^{s/10}-2}{e^{s/10} (e^{s/5}-1)} E^*(s) \\ \\ \left(\frac{4}{5}\right) \frac{2e^{s/10}+1}{e^{s/5} (e^{s/10}-1)} E^*(s) \\ \\ \left(\frac{3}{20}\right) \frac{2e^{s/10}-1}{e^{s/10} (e^{s/10}-1)} E^*(s) \\ \\ \\ \\ \end{array}$$
 none of the answers

Question 11

5 pts

⊖ True			
○ False			

Question 14	5 pts
The w-transform of 1/(3z-4) in a 5 sample/s system is	
$\bigcirc \frac{5-2w}{14w-5}$	
$\bigcirc \frac{4-3w}{21w-4}$	
\bigcirc none of the answers	
$\bigcirc \frac{10-w}{7w-10}$	

Quiz: Exam1

Question 23

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For **uncompensated** open-loop gain $G_{OL}(w)$ shown above, using Bode plot analysis the gain margin to within +/-3 dB is

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For open-loop gain $G_{OL}(w)$ combined with compensator $D_1(w)$ shown above, the phase margin of $G_{OL}(w)D_1(w)$ to within +/-10 degrees is

Question 25	5 pts

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For open-loop gain $G_{OL}(w)$ combined with compensator $D_1(w)$ shown above, the gain margin of $G_{OL}(w)D_1(w)$ to within +/-4 dB is

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For open-loop gain $G_{OL}(w)$, comparing the bandwidth using the two compensators, the unity-gain bandwidth of $G_{OL}(w)D_1(w)$ is larger than $G_{OL}(w)D_2(w)$.

17/20

Quiz: Exam1

○ -0.53and 0.21		
0.32 and 0.65		
○ 0.74 and -0.54		

Quiz saved at 6:26pm

Submit Quiz