Exam1

(!) This is a preview of the published version of the quiz

Started: Jan 9 at 6:23pm

Quiz Instructions

This exam is open book, open notes, you may use any online/hardback textbooks you like. You may use calculators and matlab, but may not collaborate with other people. All multiple choice answers should be within 5% of correct value.

Unless stated otherwise in the question, use 3 decimal precision in fill-in-the blank questions, such as "132.312" or "58.023" for example. Do not give numerical fill-in-the-blank answers as fractions such as "4/5," give answer as decimal " 0.800 " form. Also, canvas might force you to enter a leading " 0 " for numbers less than one, such as " 0.113 " and entries such as ".113" might be disallowed.

As always, make sure that you are in a location with good internet connectivity during the exam. It is not a bad idea to practice tethering through your cellphone as a backup to your regular internet access. Make sure your browser is compatible with canvas.

I may monitor my email tpweldon@uncc.edu (mailto:tpweldon@uncc.edu)_ during the exam/quiz, in case of some major urgent issue during the exam. Because the exam/quiz is online, most issues will have to wait until after the exam/quiz is completed, so do not expect any reply to any email, and proceed on with the exam/quiz even if you send an email.

Question 1

For the continuous-time system above with $H(s)=1 /(s+2)$ and $G(s)=5 /(s+3)$, the closed-loop transfer function is $G_{C L}(s)=C(s) / R(s)=$
$\frac{5(s+10)}{(s+5)(s+11)}$
$\frac{5 s+2}{s^{2}+6 s+11}$
$\frac{5(s+10)}{s^{2}+5 s+12}$

None above
$\frac{5 s+10}{s^{2}+5 s+11}$

Question 2

If $X(s)=\frac{3}{s(s+4)}$ then, $\mathrm{x}(\mathrm{t})=$

O (4/3)(1-- $-4 t) u(t)$None above$3\left(1-e^{-4 t}\right) u(t)$
$(3 / 4)\left(1-e^{-t / 4}\right) u(t)$$4\left(1-e^{-3 t}\right) u(t) / 3$

Question 3

For the LTI system above with impulse response $h[n]$, the z-transform of $h[n]$ is $H(z)=Y(z) / X(z)=$
$(2 z+1) /(4 z-3)$None above$(4 z+3) /(z+2)$$(3 z+4) /(z-2)$
$(2 z+1) /(3 z+4)$

Question 4

The z-transform of $x[n]=(3 / 4)^{n-1} u[n-1]$ is0.75/(z-4/3); |z|>4/3$4 z /(3 z-9 / 4) ;|z|>3 / 4$$1 /(z-3 / 4) ;|z|>3 / 4$None above$0.75 z /(z-3 / 4) ;|z|>3 / 4$

Question 5

5 pts

In a 10 sample/s system with $X^{*}(s)=1 /\left(5+e^{s / 5}\right)$ the z-transform (ignoring ROC) is $X(z)=$

O none above
$\frac{1}{z^{2}+5}$
$\frac{z^{2}}{z^{2}+0.5}$
$\frac{5 z}{z^{2}+5}$
$\frac{1}{z^{-2}+5}$

Question 6

In a in a 5 sample/s system with $X(s)=4 / s^{2}$, the starred transform is $X^{*}(s)=$
$\frac{0.2 e^{s / 5}}{\left(e^{s / 5}-4\right)^{2}}$
$\frac{0.2 e^{-4 / 5}}{\left(e^{-s / 5}-1\right)^{2}}$
$\frac{0.8 e^{s / 5}}{\left(e^{s / 5}-1\right)^{2}}$
$\frac{e^{s / 5}}{e^{s / 5}-1}$none above

Question 7

A continuous-time signal $x(t)$ is sampled with period $T_{0}=0.1 \mathrm{~s}$ to create discrete-time signal $\mathrm{x}[\mathrm{n}]$, and the z-transform of $\mathrm{x}[\mathrm{n}]$ is $X(z)=\frac{2}{3 z-1} ; \quad|z|>\frac{1}{3}$. Then, the starred transform of $\mathrm{x}(\mathrm{t})$ is $X^{*}(s)=$
$\frac{2}{3 e^{-s / 10}-1}$

$$
\frac{2 e^{-s / 10}}{3 e^{-s / 10}-e^{-1 / 10}}
$$

$\frac{2 e^{s / 10}}{3-e^{s / 10}}$$\frac{2}{3 e^{s / 10}-1}$None above

Question 8

In the system above, let $T=0.1 \mathrm{~s}, \mathrm{D}(\mathrm{z})=1-1 / \mathrm{z}, \mathrm{G}_{\mathrm{P}}(\mathrm{s})=4 /(\mathrm{s}+4), \mathrm{G}_{\mathrm{H} 0}(\mathrm{~s})=\left(1-\mathrm{e}^{-\mathrm{sT}}\right) / \mathrm{s}$.
For the system above, the pulse transfer function is $G(z)=C(z) / E(z)=$
$(1-1 / z)\left(1-e^{-2 / 5}\right) /\left(z-e^{-2 / 5}\right)$
$(2 / 5)\left(1-e^{-5 / 2}\right) /\left(z-e^{-5 / 2}\right)$
$(4 / 10)\left(1+e^{-2 / 5}\right) /\left(z+e^{-2 / 5}\right)$
$(1+1 / z)\left(1+e^{-4 / 5}\right) /\left(z-e^{-4 / 5}\right)$None above

Question 9

For the system above, $D(z)=1-0.5 z^{-1}, G_{P}(s)=3 / s, G_{H 0}(s)=\left(1+e^{-s T o}\right) / s, T_{0}=1 / 10$

In the open-loop system above, the starred transform of the output is $C^{*}(s)=$
$\left(\frac{4}{5}\right) \frac{e^{s / 10}-2}{e^{s / 10}\left(e^{s / 5}-1\right)} E^{*}(s)$$\left(\frac{4}{5}\right) \frac{2 e^{s / 10}+1}{e^{s / 5}\left(e^{s / 10}-1\right)} E^{*}(s)$$\left(\frac{3}{20}\right) \frac{2 e^{s / 10}-1}{e^{s / 10}\left(e^{s / 10}-1\right)} E^{*}(s)$none of the answers

Question 10

In the system above, let:

$$
H(s)=1 / 10, G_{C}(s)=G_{P}(s) G_{H 0}(s), G_{P}(s)=15, G_{H 0}(s)=\left(1-e^{-s T}\right) / s
$$

The closed-loop continuous-time step response is$3 u(t)$$6 u(t)$$1.6 u(t)$None above

If the characteristic equation for the system above is

$$
z^{2}+z-5 / 16=0
$$

then the closed-loop pulse transfer function $G_{C L}(z)=C(z) / R(z)$ is stable.

```
True
```False

\section*{Question 12}

The causal LTI system with closed-loop pulse transfer function \(G_{C L}(z)\) having the pole/zero plot above is BIBO stable.

True

False

\section*{Question 13}

For a system with variable gain \(\mathrm{K}>0\), the closed-loop response
\(G_{C L}(z)=\frac{C(z)}{R(z)}=\frac{\frac{K}{2 z+4}}{1-\frac{K}{2 z+4}}\) is stable for
none of the answers\(2<K<4\)\(2<K<6\)\(0<K<2\)

\section*{Question 14}

The w-transform of \(1 /(3 z-4)\) in a 5 sample/s system is
\(\frac{5-2 w}{14 w-5}\)
\(\frac{4-3 w}{21 w-4}\)
none of the answers
\(\frac{10-w}{7 w-10}\)
dB

For the w-transform of the digital lag filter with \(|\mathrm{D}(\mathrm{w})|\) shown above, \(\mathrm{D}(\mathrm{w})=\)None above\(100(w+1000) /(w+10)\)\(0.1(w+10) /(w+1000)\)\((w+1000) /(w+10)\)\(0.3(w+1000) /(w+10)\)

\section*{Question 16}

For a lag compensator with \(D(w)=4 \frac{1+\frac{w}{16}}{1+\frac{w}{2}}\) in a system with sample period \(\mathrm{T}_{\mathrm{s}}=1 / 4\) \(s\), the corresponding discrete-time compensator is \(D(z)=\)none of the answers\((10 z-2) /(z+3)\)\((8 z+4) /(6 z-3)\)\((6 z+2) /(5 z-3)\)

\section*{Question 17}

For the w-transform of the PID controller with \(|\mathrm{D}(\mathrm{w})|\) shown above, to within \(+/-20 \%\) the differentiator coefficient is \(K_{D}=\)None above\(10^{-5}\)0.1101,000

\section*{Question 18}

For the digital system above with sample period \(\mathrm{To}=0.001 \mathrm{~s}\), controllable form statevariable matrix \(\mathrm{A}=\)
\(\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.5 & 1.7 & -2\end{array}\right]\)
\(\bigcirc\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -1.7 & 0.5\end{array}\right]\)
none of the answers
\(\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.5 & -1.7 & 2\end{array}\right]\)
\(\bigcirc\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.9 & 2.8 & 2.8\end{array}\right]\)

\section*{Question 19}

For the digital system above with sample period \(\mathrm{To}=0.001 \mathrm{~s}\), the controllability matrix is
\[
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 0 & 0.5 \\
0 & 1 & 1 \\
1 & 0.9 & 1.9
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 2 \\
1 & 2 & 2.3
\end{array}\right]}
\end{aligned}
\]
\(\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1.7 & -1.1\end{array}\right]\)none of the answers
\(\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 1 \\ -2.9 & -2.8 & -0.9\end{array}\right]\)

\section*{Question 20}

For the digital system above with sample period \(\operatorname{To}=0.001 \mathrm{~s}\), the system is controllable.

TrueFalse

\section*{Question 21}

A state-variable system with observability matrix \(\left[\begin{array}{cc}-1 & 1 \\ 2 & -2\end{array}\right]\) is observable.TrueFalse

\section*{Question 22}

If \(H(z)=-20\left(1-z^{-1}\right)\) and \(T_{0}=10^{-3} s\) for the system above, and for the direction of DAC current as shown, the input capacitance in seen at the point V is
0.02 F
\(-0.005 \mathrm{~F}\)
- 0.02 F0.005none of the answers

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For uncompensated open-loop gain \(\mathrm{G}_{\mathrm{OL}}(\mathrm{w})\) shown above, using Bode plot analysis the gain margin to within \(+/-3 \mathrm{~dB}\) is0 dB

20 dB10 dBnone of the answers

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For open-loop gain \(\mathrm{G}_{\mathrm{OL}}(\mathrm{w})\) combined with compensator \(D_{1}(w)\) shown above, the phase margin of \(G_{O L}(w) D_{1}(w)\) to within +/-10 degrees is45 degrees90 degreesnone above135 degrees

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For open-loop gain \(G_{O L}(w)\) combined with compensator \(D_{1}(w)\) shown above, the gain margin of \(G_{O L}(w) D_{1}(w)\) to within \(+/-4 d B\) is

None above20 dB60 dB40 dB

\section*{Question 26}

For the w-transforms shown above, the Bode plots for phase of the two compensators are not shown (you may assume the phases are the correct Bode plot phases for lag, lag-lead, PID, or lag compensators). For open-loop gain \(G_{o L}(w)\), comparing the bandwidth using the two compensators, the unity-gain bandwidth of \(\mathrm{G}_{\mathrm{OL}}(w) \mathrm{D}_{1}(w)\) is larger than \(\mathrm{G}_{\mathrm{OL}}(\mathrm{w}) \mathrm{D}_{2}(\mathrm{w})\).

O False

Question 27

In the system above, let
\(D(z)=2-1 / z, H(s)=1 / 5, G_{C}(s)=G_{P}(s) G_{H 0}(s), G_{P}(s)=20, G_{H_{0}}(s)=\left(1-e^{-s T}\right) / s\).

For the system above, the closed-loop pulse transfer function is \(G_{C L}(z)=C(z) / R(z)=\)None above
\(20\left(2-e^{-5 T o}\right) /\left(z-e^{-5 T o}\right)\)
20(2z-1)/(9z-4)\(2(z+20) /(z+8 / 9)\)
\(10(2+1 / z)\left(1+e^{-T o}\right) /(4 z-9)\)
\((20 z+1) /\left(z^{2}+z+1 / 4\right)\)

\section*{Question 28}

For the system above:
In the system above, let
\(D(z)=2-1 / z, H(s)=1 / 5, G_{C}(s)=G_{P}(s) G_{H 0}(s), G_{P}(s)=20, G_{H 0}(s)=\left(1-e^{-s T}\right) / s\).
For the system above, the pole of the closed-loop pulse transfer function \(G_{C L}(z)\) is at
\(-0.25\)0.63
none of the answers0.44

For the system above: \(D(z)=1-0.5 z^{-1}, G_{P}(s)=8 / s, G_{H 0}(s)=\left(1+e^{-s T o}\right) / s, H(s)=1 / 2\), \(T_{0}=1 / 5\)

For the system above, the closed loop pulse transfer function is \(\mathbf{G}_{\mathrm{CL}}(\mathbf{z})=\) \(C(z) / R(z)=\)
\(\frac{z-4}{8 z^{2}-4 z-2}\)
○ \(\frac{8 z-2}{7 z^{2}+2 z-6}\)
\(\frac{8 z-4}{5 z^{2}-z-2}\)
none of the answers

\section*{Question 30}

For the system above: \(D(z)=1-0.5 z^{-1}, G_{P}(s)=8 / s, G_{H 0}(s)=\left(1+e^{-s T o}\right) / s, H(s)=1 / 2\), \(\mathrm{T}_{0}=1 / 5\)

For the system above, the poles of the closed-loop pulse transfer function \(\mathbf{G}_{\mathrm{CL}}(\mathbf{z})\) are at
none of the answers
- -0.53 and 0.21
0.32 and 0.65
0.74 and -0.54

Quiz saved at 6:26pm
Submit Quiz```

