Exam₁

① This is a preview of the published version of the quiz

Started: Jan 19 at 10:08am

Quiz Instructions

Make sure that you have all 30 questions before starting

Open book (2 books): Weldon and Nagle or other choice as textbook

1 sheet front/back notes

You may use matlab or mathcad or both

Multiple-choice answers should be within 10% of correct value

Question 2		5 pt
dB -10 -20 -30 -40 -50 1 10	100 110 ³ 110 ⁴	1-10 ⁵
The PID compensator	$D(w)=K_p+K_i/w+K_dw$, above, has integrated by $D(w)=K_p+K_i/w+K_dw$	rator coefficient K _i =
onone of the answers		
none of the answers0.1		
9 1000 1000 1000 1000		

Question 3	5 pts
The frequency of the pole of a digital lag cor	ntroller (digital lag compensator) is
que en	
higher than the frequency of the zero.	

5 pts

Question 5	5 pts
For a system with variable gain K>0, the closed-loop response $G_{CL}\left(z ight)=rac{K_{cl}}{R(z)}=rac{K_{cl}}{1-rac{2K_{cl}}{2}}$ is stable for	
z+3	
○ 2 <k<4< td=""><td></td></k<4<>	
○ 2 <k<4 ○ 0<k<1< td=""><td></td></k<1<></k<4 	
75 CO	

Question 6	5 pt
For a lag compensator with $D\left(w\right)=5rac{1+rac{w}{\theta}}{1+rac{w}{\alpha}}$ in a systematic formula of the system of th	em with sample period
T _s =1/2 s, the corresponding discrete-time compensator	
O = (17 =+1)	
$ \bigcirc \ \frac{5}{9} \ \frac{(17 \ z+1)}{(5 \ z-3)} $	
9 (13 z+5)	

Question 7	5 pts
The first row of the Routh table for $w^4 + 2w^3 + 3w^2 + 4w + 5$ is	
onone of the answers	
○ 135	
O 246	
035	

Question 8	5 pts
The convolution of the two sequences $x[n] = \{1,0,-1,0,0,0\}$ is)} and y[n] = {1,-1,1,0,0,0}
○ {1,-1,0,1,-1,0}	
onon of the answers	
0 (1001.10)	
○ {1,0,0,1,-1,0}	

Question 9	5 pts
The z-transform of $h[n]=(4)^{-n}u[n]$ is $H(z)=$	
onone of the answers	
$\bigcirc \ \frac{z}{z-1/4}; z > 1/4$	
$\bigcirc \ \frac{1}{z+1/4}; z > 1/4$	

Question 10	5 pts
In a phase-locked loop with a multiplier phase detector, of detector coefficient Kp from 16 volt/rad to 4 volt/rad will of frequency $\omega_{\rm h}$ by a multiplicative factor of	_
onone of the answers	
O 1/2	

i) =

In a state-variable control system, the controller K generates an estimate of the

state variables.

O True

○ False

Question 28	5 pts
For the digital system above with sample period To=0.001 s, the observabilimatrix is	ty
$\begin{bmatrix} 1.2 & 6.3 & 12.1 \\ 4.5 & 4.5 & -24.2 \\ -3.3 & 3.9 & -11.0 \end{bmatrix}$	
0 3.2 9.5 9.5 3.2 0 -0.2 0.9 -1.5	
$ \begin{bmatrix} 3.2 & 9.5 & 9.5 \\ 9.5 & 9.5 & 3.2 \\ -0.2 & 0.9 & -1.5 \end{bmatrix} $	
Question 29	5 pts
$ \begin{array}{c} u[n] \rightarrow 3.2 \rightarrow 0.9 \\ \hline z^{-1} \rightarrow 9.5 \rightarrow 0.9 \\ \hline z^{-1} \rightarrow 3.2 \end{array} $	
For the digital system above with sample period To=0.001 s, the syst controllable.	em is
○ True ○ False	

